
A finite-dimensional model for affine, linear
quantum lambda calculi with general recursion

Alejandro Díaz-Caro1,2,?,??, Malena Ivnisky3,2,?,??,
Hernán Melgratti3,2,?, and Benoît Valiron4,?

1 DCyT, Universidad Nacional de Quilmes, Bernal, PBA, Argentina
2 CONICET-UBA Instituto de Ciencias de la Computación, Buenos Aires, Argentina

3 DC, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina
4 Université Paris-Saclay, CentraleSupélec, CNRS, ENS Paris-Saclay, Laboratoire

Méthodes Formelles, 91190, Gif-sur-Yvette, France

Abstract. We introduce a concrete domain model for the quantum
lambda calculus λ◦ρ extended with a fixpoint operator. A distinctive fea-
ture of λ◦ρ is that it relies on density matrices for describing both quan-
tum information and probabilistic distributions over computation states.
It has been shown that there is a conservative translation from λ◦ρ to the
quantum lambda calculus of Selinger and Valiron. In contrast to existing
models for quantum lambda calculi featuring recursion with intuitionis-
tic arrows, our model is finite-dimensional and does not need more than
cones of positive matrices and affine arrows.

Keywords: Quantum lambda calculus · Denotational semantics · Fix-
point operator · Linear affine type system.

1 Introduction

Quantum computation is a model of computation where data is encoded on the
state of particles governed by the laws of quantum physics. In the mathematical
formalism, a piece of quantum data can be regarded as a complex linear combi-
nation of pieces of classical data: quantum states are represented with Hilbert
spaces. To recover classical data from quantum information, the physical oper-
ation is called measurement: it is a probabilistic operation, modifying the global
state of the system. The bottom line is that a quantum algorithm in general
produces a probabilistic distribution of pure quantum states. The standard de-
notational semantics for quantum data consists in density matrices, i.e. positive
matrices of trace 1. In this compact representation, eigenvectors correspond to
classical outcomes while eigenvalues encompass the probability of getting each
of them. In the historical interpretation [6], a quantum algorithm inputs a quan-
tum state, operates on it and outputs the resulting modified state: this simple
situation can be regarded as a superoperator, a trace-preserving linear map act-
ing on positive matrices. The semantics of quantum algorithms in this approach
? Funded by the IRP SINFIN, 21STIC10 Qapla’, and ECOS-Sud A17C03 QuCa.
?? Funded by PICT-2019-1272 and PIP 11220200100368CO.

2 A. Díaz-Caro, M. Ivnisky, H. Melgratti, and B. Valiron

is finite-dimensional: a quantum algorithm manipulates a finite amount of infor-
mation.

The last twenty years have seen the development of quantum programming
languages and semantics thereof. In particular, the design of functional pro-
gramming languages for quantum computation has roots in the seminal work
of Selinger [10], introducing quantum flow charts (QFCs). QFCs are (possibly
recursive) first-order programs: the trace of the output might be smaller than 1,
allowing the program to possibly diverge. The denotational semantics of QFCs
therefore extends superoperators to non-increasing linear maps acting on cones
of positive matrices. This approach has been subsequently extended in [11] to
accommodate for higher-order programs: The quantum lambda calculus consists
in a simply-typed, linear lambda calculus without recursion. Its denotational
semantics is still finite-dimensional. It consists in an extension of the semantics
of QFC where the requirement for trace-preservation for morphisms is relaxed.
Objects are still cones of positive matrices, but morphisms are the so-called
completely positive maps (CPM). Thanks to the compact-closure of the corre-
sponding category [10,12], this makes it possible to capture internal homs in this
semantics.

If the CPM category can encode linear quantum higher-order computation,
it is however limited in several ways. First, its finite dimensional aspect makes it
impossible to account for duplicable data (as it would require the possibility to
have non-linear functions) or inductive types. Then, although CPM-homsets can
be endowed with a partial order consistent with the trace (the Löwner order), the
lack of constant (non-zero) functions places the least fixed point of any function
at 0, essentially saying that the fixpoint construction sending A → A to A is
always diverging (as its probability is then 0).

The main problem that has been tackled in the literature [3,4,7,8] consists in
developing a semantics extending CPM to support infinite dimensional objects:
the focus has been placed on duplicability [7] and inductive types [8]. In both
cases, the extensions encompasses affine functions, allowing one to rely on the
least fixed point construction to model recursion.

Contributions. In this work, we instead concentrate on the problem of de-
signing a finite dimensional extension of the CPM denotational semantics sup-
porting fixpoints. In particular, we do not need to account for duplicable objects
nor inductive datatypes. To support our approach, we follow an operational
approach by building up on a concrete quantum lambda-calculus featuring re-
cursion while admitting a finite-dimensional model. Concretely, we extend the
quantum lambda calculus λ◦ρ [5] with a fixpoint operator while forbidding du-
plicable elements. We remark that λ◦ρ has been shown equivalent [1] to the one
proposed by Selinger&Valiron [11], but relies on a presentation in terms of den-
sity matrices, which we felt makes it easier to study syntactically, since it is
closer to its semantics. The denotational semantics of our language follows the
approach of Selinger [10]; consequently, we interpret basic types as positive ma-
trices with trace less than or equal to 1. Following the usual intuition, a matrix

A model for affine, linear quantum lambda calculi with general recursion 3

whose trace is 1 represents a terminating program, while a matrix whose trace
is smaller than 1 represents a program that might not terminate.

We build upon the standard Choi representation [2] of a completely positive
linear map f as the positive matrix, and extend it to the affine case. We show
that this finite model is sound and adequate, and suffices to interpret the fix-
point operator as the least upper bound of a chain of approximations, i.e., as
lim
n→∞

χnf (0) where χf is the extended Choi representation of the affine function
f , and 0 denotes the null matrix.

Our model is only focused on affine behavior, which makes it possible to
stay within a finite-dimensional setting, unlike e.g. [7]. We therefore claim to
have found a sweet spot for the denotation of quantum programs with fixpoints,
when duplication is not required.

Plan of the paper. In Section 2 we introduce the calculus λµρ , give some
examples, and state its syntactical correctness. In Section 3.1 we give a version
of λµρ with an incremental fixpoint operator parameterised by a bound on the
number of iterations. The semantics interpretation of λµρ and of this intermediate
language are given in Sections 3.2 to 3.4. The soundness for the intermediate
language is proved in Section 4.1, which allows us to study the existence of the
limit when the bound tends to infinity, which is proven in Section 4.2. In Section 5
we prove the following adequacy result: the probability of termination for a term
of the basic type is equal to the trace of its interpretation (Theorem 5.9). We
finally conclude in Section 6. Omitted technical material and proofs are provided
in the appendices for the reviewers’ convenience.

2 The calculus λµ
ρ

In this section, we introduce the calculus λµρ , which extends λ◦ρ [5] with a fixpoint
operator.

Since the quantum measurement is a probabilistic operation, we first define
probability (sub)distributions as follows.

Definition 2.1. A (discrete) probability subdistribution over a set Ω is a func-
tion p : Ω → [0, 1] such that

∑
ω∈Ω p(ω) ≤ 1 and for any A ⊆ Ω, p(A) =∑

ω∈A p(ω); moreover, p is said to be a distribution if
∑
ω∈Ω p(ω) = 1.

We write {(pi, ωi)}i∈{1,...,n} (also {(p1, ω1), · · · , (pn, ωn)}) for the probabil-
ity subdistribution p over Ω = {ω1, . . . , ωn} defined such that p(ωi) = pi for
all i = 1, . . . , n. With a slight abuse of notation, we write {(p, ω), (q, ω)} in
lieu of {(p+ q, ω)}, with the latter being the canonical form. Also, we shall
write

{
(pi, {(qj , tij)}j)

}
i
for {(piqj , tij)}ij . Unless otherwise noted, distribu-

tions are considered in canonical form. Given two subdistributions {(pi, ωi)}i∈I
and {(pj , ωj)}j∈J , we write {(pi, ωi)}i∈I ∪{(pj , ωj)}j∈J for the (sub)distribution
{(pk, ωk)}k∈I∪J (if defined).

4 A. Díaz-Caro, M. Ivnisky, H. Melgratti, and B. Valiron

t ::= x | λx.t | tt | µx.t (Standard lambda terms)
| ρn | Unt | πmt | t⊗ t (Quantum postulates)
| letcase◦ x = t in {t, . . . , t} (Control)
| {(pi, ti)}i∈{1,...,n} (Distributions)

where n,m ∈ N and ρ ∈ Dn =
{
ρ | ρ ∈ C2n×2n positive with tr(ρ) = 1

}
Fig. 1: Syntax for the λµρ calculus

2.1 Syntax and Operational Semantics

The syntax of the λµρ calculus is given in Figure 1 where C denotes the set of
complex numbers and Cn×m the set of (n ×m)-dimensional complex matrices.
Terms are divided in four categories:

– Standard terms of the lambda calculus with fixpoint, namely, a variable x, an
abstraction λx.t, an application tr, and the fixpoint µx.t of the abstraction
λx.t.

– Quantum postulates, which include a quantum state ρn, where ρ is an n-
dimensional semidefinite positive Hermitian matrix (from now on referred
to as positive matrix) with trace equal to 1 (we shall also write σ and τ
for quantum states); the application Unt of the unitary operator U to the
first n qubits of t; the measurement πmt of the first m qubits of t in the
computational basis; and the tensor product of states t⊗ r.

– The control operator construction, letcase◦ x = r in {t0, . . . , tn}, that ex-
presses the combination of the programs t0, . . . tn according to a probability
distribution given by the result of the measurement described by r.

– Probability distributions of terms.

Our syntax allows for terms such as {(pi, ti)}i∈{1,...,n} {(qj , rj)}j∈{1,...,m}, in
which the distribution {(pi, ti)}i∈{1,...,n} is applied to {(qj , rj)}j∈{1,...,m}. How-
ever, such term describes a probability distribution over the set

{tirj |1 ≤ i ≤ n, 1 ≤ j ≤ m}

which can be equivalently written as {(piqj , tirj)} i∈{1,...,n}
j∈{1,...,m}

. Formally, we con-

sider the first term —applying a distribution to another— to be just a notation
for the second. We extend this convention all over constructors as follows.

λx. {(pi, ti)}i∈I := {(pi, λx.ti)}i∈I µx. {(pi, ti)}i∈I := {(pi, µx.ti)}i∈I
t {(pi, ri)}i∈I := {(pi, tri)}i∈I {(pi, ti)}i∈I r := {(pi, tir)}i∈I

Un {(pi, ti)}i∈I := {(pi, Unti)}i∈I πm {(pi, ti)}i∈I := {(pi, πmti)}i∈I
{(pi, ti)}i∈I ⊗ r := {(pi, ti ⊗ r)}i∈I r ⊗ {(pi, ti)}i∈I := {(pi, r ⊗ ti)}i∈I
letcase◦ x = {(pi, ti)}i∈I in {r1, . . ., rn}:={(pi, letcase◦ x = ti in {r1, . . ., rn})}i∈I

A model for affine, linear quantum lambda calculi with general recursion 5

The above notation states that the distribution operator commutes with all
operators. Additionally, any term t can be regarded as a distribution that assigns
probability 1 to t.

We let Val be the set of values, which is defined as follows.

Val ::= ρn | πmρn | {(pi, λx.ti)}i∈{1,...,n}

The operational semantics of the calculus is given by the rules in Figure 2.
Rules for standard lambda terms correspond to those of the weak call-by-name
lambda calculus (i.e., there are no reductions under lambda).

The first rule concerning quantum postulates accounts for the fact that any
mixed state given as a probability distribution {(pi, ρni)}i∈I over density matrices
{ρi}i∈I can be represented as a unique density matrix, which is obtained as the
linear combination of the matrices {ρi}i∈I , i.e.,

∑
i∈I piρi. The reduction rule

for Umρn corresponds to the application of the unitary operator U over the first
m qubits of the density matrix ρ, which has dimension n ≥ m. Since m and
n may be different, the term Umρn stands for the application of the unitary
operator U = U⊗In−m with In−m being the n−m dimensional identity matrix.
As usual, U

†
denotes the conjugate transpose of U . The rule corresponding to

the tensor operator states that the combination of two density matrices reduces
to the tensor product of the matrices.

The evaluation of a term letcase◦ x = πmρn in {t0, . . . , t2m−1} gives rise to
the probabilistic distribution of the branches t0, . . . , t2m−1, where the probability
assigned to each branch corresponds to the probability pi of each of the possible
outcomes ρi of the measurement πmρn. The bound variable x, which may appear
on every ti, is substituted with the corresponding measurement result ρi. The
expression |i〉〈i| in the side condition of this rule represents the projectors |i〉〈i|⊗
In−m. It is worth remarking that the operator πm only measures the first m
qubits of a density matrix. Should other set of qubits be measured, then the
state can be previously transformed with the application of a suitable unitary
operator that swaps the qubits as required.

The typing system for the λµρ calculus is defined in Figure 3. The set A of
types includes (i) n, which is the type of the density matrices of n-qubit states;
(ii) (m,n) (with m ≤ n) which stands for measurements over the first m qubits
of n-qubit states; and (iii) the arrow type A(B of the affine functions from A
to B.

Lambda terms are typed as in the affine lambda calculus, while typing rules
for quantum postulates are straightforward. The typing rules for control and
distribution terms use the auxiliary function on types `(A), dubbed last type of
A, which is inductively defined by:

`(n) = n `((m,n)) = (m,n) `(A(B) = `(B)

Its usage is analogous in both rules (i.e., + and me), where the premise `(A) 6=
(m,n) prevents the probabilistic combination of measurements. Note that πm is
the constructor for measurements while letcase◦ is its destructor. Indeed, terms
of the form πmt are only used inside their destructors letcase◦.

6 A. Díaz-Caro, M. Ivnisky, H. Melgratti, and B. Valiron

(Standard lambda terms)

(λx.t)r −→ t[x := r] µx.t −→ t[x := µx.t]

(Quantum postulates)

{(pi, ρni)}i∈I −→ (
∑
i∈I

piρi)
n Umρn −→ (UρU

†
)n ρn ⊗ σm −→ (ρ⊗ σ)n×m

(Control)

letcase◦ x = πmρn in {t0, . . . , t2m−1} −→ {(pi, ti[x := ρni])}i/pi 6=0

where pi = tr
(
|i〉〈i|ρ|i〉〈i|

†)
ρi =

|i〉〈i|ρ|i〉〈i|†

pi

(Contextual rules)

t −→ r
ts −→ rs

t −→ r
Umt −→ Umr

t −→ r
πmt −→ πmr

t −→ r
t⊗ s −→ r ⊗ s

t −→ r s9
s⊗ t −→ s⊗ r

j∈J, tj −→ rj i∈I, ti 9
{(pi, ti)}i∈I∪J −→ {(pi, ti)}i∈I ∪ {(pj , rj)}j∈J

t −→ r
letcase◦ x = t in {s0, . . . , s2m−1} −→ letcase◦ x = r in {s0, . . . , s2m−1}

Fig. 2: Rewrite system for the λµρ calculus

Despite rule me allows x to be used in the different branches t0, . . . , t2m−1,
we remark that such duplication of variables does not violate the quantum no-
cloning theorem because each branch corresponds to the continuation associated
with a particular result of the measurement.

We now illustrate the main features of the calculus by encoding a few repre-
sentative examples from the literature.

Example 2.2 (Teleportation protocol). The teleportation protocol (see [6, Section
1.3.7]) can be implemented in λµρ as follows. We start by defining the term ρ2

representing the first Bell state describing maximum entanglement between two
qubits:

ρ =
1

2
(|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|)

Then, the teleportation protocol can be expressed as

telep := λx.letcase◦ y = π2(H1 CNOT2 (x⊗ ρ2)) in {y, Z3
3y,X

3
3y, Z

3
3X

3
3y}

where capitalised terms are (the density matrices corresponding to the gates)
below.

– H is the Hadamard gate;
– CNOT is the Controlled-Not gate;
– Z is the Phase gate;

A model for affine, linear quantum lambda calculi with general recursion 7

A ::= n | (m,n) | A(A where m ≤ n ∈ N

(Standard lambda terms)

Γ, x : A ` x : A
ax Γ, x : A ` t : B

Γ ` λx.t : A(B
(i

Γ ` t : A(B ∆ ` r : A
Γ,∆ ` tr : B

(e
Γ, f : A ` t : A
Γ ` µf.t : A

µ

(Quantum postulates)

Γ ` ρn : n
axρ Γ ` t : n m ≤ n

Γ ` Umt : n
ui

Γ ` t : n
Γ ` πmt : (m,n)

mi
Γ ` t : n ∆ ` r : m
Γ,∆ ` t⊗ r : n+m

⊗

(Control)
i=0,...,2m−1 ∆i, x : n ` ti : A Γ ` r : (m,n) `(A) 6= (m′, n′)

∆0, . . . ,∆2m−1, Γ ` letcase◦ x = r in {t0, . . . , t2m−1} : A
me

(Distributions)
i=1,...,n Γ ` ti : A

∑n
i=1 pi = 1 `(A) 6= (m,n′)

Γ ` {(pi, ti)}i∈{1,...,n} : A
+

Fig. 3: Typing system for the λµρ calculus

– X is the Not gate;
– Z3 = I2 ⊗ Z; and
– X3 = I2 ⊗X.

The argument x of the lambda abstraction in the definition of telep corre-
sponds to the the unknown state τ to be teleported. The CNOT operator is
applied to the first two qubits of the state τ ⊗ ρ. We recall that a unitary op-
erator U of size m can be applied to a density matrix ρ of size n ≥ m. A size
mismatch is accommodated by the operational semantics, since the term Umρn

reduces to the density matrix (UρU
†
)n with U = U ⊗ In−m. Therefore, the

term CNOT2 (τ1 ⊗ ρ2) is a well-typed term even though CNOT2 has size 2 and
(τ1⊗ρ2) has size 3. The Hadamard operator H is then applied to the first qubit;
this is needed because the successive measurement is in the computational basis
instead of the Bell basis. According to the letcase constructor, the evaluation
proceeds differently depending on the possible outcomes of the measurement,
which in this case are the possible combinations of two bits, i.e., {00, 01, 10, 11}.
Note that each of the branches in {y, Z3

3y,X
3
3y, Z

3
3X

3
3y} is associated with one of

the possible measurement outcomes. Correspondingly, the variable y is bound to
different values in each of the branches, i.e., y represents the state after measure-
ment. For instance, it takes value (|00〉〈00|⊗τ)3 when evaluating the first branch,
(|01〉〈01| ⊗ Z−1τ)3 when evaluating the second branch, etc. Hence, each branch

8 A. Díaz-Caro, M. Ivnisky, H. Melgratti, and B. Valiron

will apply a different transformation to the third qubit of the corresponding
resulting state: the identity, Z, X, or ZX.

Finally, note that the evaluation of the letcase construction produces a prob-
ability distribution over the values corresponding to each of the branches; where
probabilities are those arising from measurement. By (omitted) mechanical cal-
culation, it can be checked that measuring the state (H1 CNOT2 (x⊗ρ2)) in the
computational basis produces a uniform distribution on {00, 01, 10, 11}. Hence,
telep τ1 reduces as follows

telep τ1 −→∗
{
(14 , (|ij〉〈ij| ⊗ τ)

3)
}
i,j∈{0,1} −→

∗ (14I2 ⊗ τ)
3

where the third qubit of the state coincides with the qubit τ that was expected
to be teleported.

Example 2.3 (Deutsch’s algorithm). Deutsch’s algorithm (see [6, Section 1.4.3])
can be used to determine whether a given function f : {0, 1} → {0, 1} is constant
(f(0) = f(1)) or not. Let Uf be the unitary application |x, y〉 7→ |x, y u f(x)〉,
where u is addition modulo 2. Deutsch’s algorithm can be implemented by the
following term

deutschf := letcase◦ x = π1
(
H1U2

f (H ⊗H)2|01〉〈01|2
)

in {|0〉〈0|1, |1〉〈1|1}

The algorithm starts by picking a two qubit system with state |01〉〈01|, and
successively applies the Hadamard operator independently to each of the qubits,
i.e., it applies the quantum operator H ⊗H. Then, the unitary operator Uf is
applied to the system, and the Hadamard gate H is applied to the first qubit.
Finally, the first qubit of the resulting state is measured. It can be checked by
mechanical calculation that the result is 0 if and only if f(0) = f(1) (regardless
of the definition of f). Consequently, depending on f , the measurement will
produce either 0 with probability 1 (when f(0) = f(1)) or 1 with probability 1
(when f(0) 6= f(1)). Therefore, we have

deutschf −→∗
{
|0〉〈0|1 iff f(0) = f(1)

|1〉〈1|1 iff f(0) 6= f(1)

Example 2.4. We illustrate the definition of a recursive (non-terminating) term
that converges to the state |0〉〈0|, which is defined as follows

F := µx.letcase◦ z = π1|+〉〈+|1 in {x, |0〉〈0|1}

The term F defined above corresponds to the fixpoint of the lambda abstrac-
tion f := λx.letcase◦ z = π1|+〉〈+|1 in {x, |0〉〈0|1}, which receives a one-qubit
state x and behaves differently depending on the result of the measurement (in
the computational basis) of the state |+〉〈+|. The measurement behaves analo-
gous to a coin toss: it produces 0 or 1 with probability 1

2 each. If the measured
value is 0, then the function returns the argument x; otherwise, it returns the
state |0〉〈0|. Hence, the application of the abstraction f on a term t produces

A model for affine, linear quantum lambda calculi with general recursion 9

the probability distribution
{
(12 , t), (

1
2 , |0〉〈0|

1
)
}
. The only fixpoint of f is clearly

|0〉〈0|1.
Note that the term F reduces as follows:

F = µx.letcase◦ z = π1|+〉〈+|1 in {x, |0〉〈0|1}

−→ letcase◦ z = π1|+〉〈+|1 in {F, |0〉〈0|1}

−→
{
(12 ,F), (

1
2 , |0〉〈0|

1
)
}

−→
{
(12 , letcase

◦ z = π1|+〉〈+|1 in {F, |0〉〈0|1}), (12 , |0〉〈0|
1
)
}

−→
{
(14 ,F), (

3
4 , |0〉〈0|

1
)
}

−→∗
{
(1
2n ,F), (

2n−1
2n , |0〉〈0|1)

}
−→ . . .

which converges to
{
(1, |0〉〈0|1)

}
.

The evaluation of the term F introduced in Example 2.4 does not terminate,
i.e., it proceeds indefinitely. However, the evaluation of F admits another inter-
pretation: if we were to choose (with probability 1

2) just one path to follow at
each coin flip, then the global probability of no termination would be 0. Indeed,
λ◦ρ internalises all the paths in which computation may evolve as a probability
distribution, as a sort of “generalised mixed state”. The original presentation of
λ◦ρ [5] is accompanied by an alternative presentation, dubbed λρ, in which reduc-
tion rules are probabilistic (in the sense discussed above). Moreover, it has been
also shown that the semantics of both calculi are coincident. For technical con-
venience, we opted for the presentation style of λ◦ρ, in which probabilistic paths
are internalised; and understand that the evaluation of the term F terminates
with probability 1. As a matter of fact, the denotational semantics in Section 3
establishes |0〉〈0| as the denotation of F, which is obtained as the limit of the
distribution

{
(1
2n ,F), (

2n−1
2n , |0〉〈0|1)

}
when the number n of iterations goes to

infinity.

2.2 Correctness

In this section we report on expected properties of the calculus; namely, progress,
subject reduction and strong normalisation of typed terms not containing µ. It
has been already shown that λ◦ρ (i.e., the fragment of λµρ without fixpoints) enjoys
progress for typed closed terms (i.e., any typed closed term is either a value or it
reduces), subject reduction, and strong normalisation [5,9]. The last two results
are directly adapted to λµρ , while the first one follows by induction.

Theorem 2.5 (Progress). If ` t : A, then either t is a value or there exists a
term r such that t −→ r.

10 A. Díaz-Caro, M. Ivnisky, H. Melgratti, and B. Valiron

Proof. By a straightforward induction on t.

Theorem 2.6 (Subject reduction). If Γ ` t : A, and t −→ r, then Γ ` r : A.

Proof. Straightforward extension of the proof for λ◦ρ [5, Theorem 4.4].

Theorem 2.7 (Strong normalisation). If Γ ` t : A and t does not contain
any µ, then t is strongly normalising.

Proof. Straightforward adaptation of the proof for λ◦ρ2 [9, Theorem 4.3.8], which
is a polymorphic extension of λ◦ρ.

3 Denotational semantics on positive matrices

In this section we develop a denotational semantics of λµρ , in which terms are
interpreted as density matrices, along the lines of [10,12]. From a semantic view-
point, matrices with trace strictly smaller than 1 represent programs with a pos-
itive probability of non-termination [10]. As customary, we rely on the Löwner
order v over density matrices of dimension n defined such that M v N if and
only if M −N is a positive matrix. As shown in [10], density matrices of dimen-
sion n equipped with the Löwner order conforms a CPO that has the null matrix
0 as its least element. For functions, we adopt the CPM approach of [12].

However, our interpretation of functions allows us to accommodate affine
maps, i.e., maps f such that f(0) 6= 0; this is achieved by representing each
affine mapping as the composition of a linear transformation and a constant
translation. This change is essential for the interpretation of terms µx.t as the
least fixed point of the denotation of λx.t: if every abstraction were interpreted
as a linear map, then its least fixed point would be also 0 (i.e., the bottom of
the domain).

Technically, our definition of the denotational semantics of λµρ is obtained
indirectly from an intermediate calculus in which fixpoints are incremental, i.e.,
the fixpoint operator is parameterised by a natural number that bounds the
possible iterations. The interpretation of fixpoints in λµρ is obtained as the limit
of the interpretation of the incremental fixpoint.

The remaining of this section is structured as follows. We start by extending
λµρ with incremental fixpoints in Section 3.1. In Section 3.2 we define domains
and the interpretation of types. In Section 3.3, we give a canonical representation
for affine maps as an extension of the classical Choi representation of CPMs. The
interpretation of terms is presented in Section 3.4.

3.1 Incremental fixpoint

In order to account for incremental fixpoints, we modify the syntax of λµρ to
define a calculus called λ[µ]ρ as follows:

t ::= x | λx.t | tt | µnx.t | ⊥ (Standard lambda terms)

A model for affine, linear quantum lambda calculi with general recursion 11

| ρn | Unt | πmt | t⊗ t (Quantum postulates)
| letcase◦ x = t in {t, . . . , t} (Control)
| {(pi, ti)}i∈{1,...,n} (Distributions)

where fixpoint terms are labelled by a natural number n, and ⊥ stands for the
undefined value. The set of typing rules in Figure 3 is extended with the following
axiom

Γ ` ⊥ : A

while the typing rule should now consider decorated fixpoints.
The rewrite system for the λ[µ]ρ calculus is given by the relation . In addition

to the rules in Figure 2, we consider following ones:

µ0x.t ⊥ µn+1x.t t[x := µnx.t]

The evaluation of a fixpoint expression reduces the decoration n + 1 at each
iteration until it reaches 0, when it reduces to the undefined term ⊥. In addition,
we need the following instrumental rules to propagate ⊥.

⊥t ⊥ Un⊥ ⊥ πn⊥ ⊥
⊥⊗ t ⊥ t⊗⊥ ⊥ letcase◦ x = ⊥ in {t1, . . . , tn} ⊥

Note that the incremental version of the term F in Example 2.4, i.e., Fn =

µnx.letcase
◦ z = π1|+〉〈+|1 in {x, |0〉〈0|1} rewrites to

{
(1
2n ,⊥), (

2n−1
2n , |0〉〈0|1)

}
after n iterations, and converges to

{
(1, |0〉〈0|1)

}
when n approaches infinity.

3.2 Interpretation of Types

In order to account for non-termination, we will consider domains involving
positive matrices with trace equal or lesser than 1. Let

D≤n =
{
ρ | ρ ∈ C2n×2n positive with tr(ρ) ≤ 1

}
and note that Dn (D≤n . Then, types are interpreted as follows:

LnM = D≤n

L(m,n)M =

{
M |M ∈

2m⊕
i=1

D≤n and tr (M) ≤ 1

}
LA(BM = {f | f positive in (LAM⊗ LBM)⊕ LBM}

– The type n is interpreted as the set of density matrices of dimension 2n,
since it is associated with n-qubit systems.

– The type (m,n) is interpreted as the set of coproducts of 2m density matrices
of dimension 2n, with global trace bounded by 1. Intuitively, the type (m,n)
describes all the possible outcomes of measuring the first m qubits of a
state of n qubits, i.e., the combination of 2m possible states, each of them
in D≤n . For example, M = (12 |0〉〈0| ⊕

1
2 |1〉〈1|) ∈ L(1, 1)M because 1

2 |0〉〈0| ∈
D≤1 , 12 |1〉〈1| ∈ D

≤
1 and tr (M) = 1.

12 A. Díaz-Caro, M. Ivnisky, H. Melgratti, and B. Valiron

– The type A (B is interpreted as the set of positive matrices in (LAM ⊗
LBM)⊕ LBM, where the linear part is represented in LAM⊗ LBM via its action
on the canonical basis of LAM, and the constant part is a matrix in LBM.

Definition 3.1 (Domains). The set Dom of interpretation domains is Dom =⋃
A∈TypesLAM.

Definition 3.2 (Dimension). The dimension of a type is defined as the di-
mension of its representation space, that is dim(A) = dim(LAM):

dim(n) = 2n

dim((m,n)) = 2m2n = 2n+m

dim(A(B) = (dim(A) + 1) dim(B)

3.3 Extended Choi representation for affine functions

Affine functions consist of a linear transformation and a translation; conse-
quently, we interpret a function f : A (B as a matrix χ[f] ∈ LA (BM
that combines two matrices, one that represents its linear part and one that
represents its constant part, i.e.,

χ[f] =

 f(EA11)− f(0dim(A)) . . . f(E
A
1n)− f(0dim(A))

...
. . .

...
f(EAn1)− f(0dim(A)) . . . f(E

A
nn)− f(0dim(A))

⊕ f(0dim(A))

where {EAij}ij are the elements of the canonical basis of LAM, and 0dim(A) is the
null matrix in LAM. The matrix on the left-hand-side of the coproduct represents
the linear transformation on the canonical basis of LAM, and the matrix on the
right-hand-side represents the translation.

We can also write this representation in terms of the characteristic matrix
defined in [10, Section 6.7] for the linear function f − f(0dim(A)). Let g be a
linear function, its characteristic matrix is

χ[g] =

 g(EA11) . . . g(E
A
1n)

...
. . .

...
g(EAn1) . . . g(E

A
nn)


Then χ[f] can equivalently be defined as χ[f] = χ[f−f(0dim(A))]

⊕ f(0dim(A)).
Then, the application of an affine map (represented by its characteristic ma-

trix) to an element of its domain requires

1. decomposing the element in the canonical basis,
2. applicating the linear transformation to each individual component, and
3. accumulating all partial results and the translation.

A model for affine, linear quantum lambda calculi with general recursion 13

Definition 3.3 (Projection). Let {Enij} be the canonical basis of the space
Cn×n, and χ = (

∑
ij(E

n
ij ⊗Mij))⊕M⊥ ∈ Cnm×nm⊕Cm×m an affine mapping.

Then, the projection of χ with respect to the indexes 1 ≤ k, l ≤ n is Pkl(χ) =
Mkl. Moreover, P⊥(χ) =M⊥.

Intuitively, the operator Pkl projects the submatrix of size Cm×m of the
linear component of χ that corresponds to the basis Enij , while P⊥ projects the
constant component of the mapping.

Definition 3.4 (Application). Letχ ∈ Cnm×nm⊕Cm×m be a linear mapping.
Then, the application of χ to an element in Cn×n is denoted by the operator
, which is defined as follows:

χ #
(∑

ij

mijE
n
ij

)
=
(∑

ij

mijPij(χ)
)
+ P⊥(χ)

We shall write χ #n M for n applications of χ to M , e.g., χ #3 M =
χ # (χ # (χ #M)).

Remark 3.5. The operator # can be defined in terms of the standard linear
application @ of Choi matrices directly as

χ[f] #M =
(
χ[f−f(0n)] ⊕ f(0n)

)
#M = χ[f−f(0n)]@M + f(0n)

The following two results state two useful properties about the application
operator.

Lemma 3.6 (# is right affine). Let χ ∈ Cnm×nm ⊕ Cm×m be an affine
mapping and M,N ∈ Cn×n two matrices. Then,

χ # (M +N) = χ #M +χ # N − P⊥(χ)

Lemma 3.7 (# is left linear). Let χ1,χ2 ∈ Cnm×nm ⊕ Cm×m be affine
mappings and M ∈ Cn×n a matrix. Then,

(χ1 +χ2) #M = χ1 #M +χ2 #M

3.4 Interpretation of Terms

Our interpretation of terms depends on a valuation function, i.e., a partial func-
tion θ : Var → Dom that maps each variable to an element of some domain.
Then, the interpretation of a (typed) term t with respect to a valuation θ is
inductively defined by the equations in Figure 4. For the sake of simplicity, we
left implicit the typing judgement and write LtMθ in lieu of LΓ ` t : AMθ. This
is irrelevant for most of the equations but for abstractions and fixpoints. For
abstractions, we rely on the representation of affine mappings introduced in Sec-
tion 3.3, in this case, we implicitly assume Γ ` λx.t : A (B and a ∈ LAM.
Analogously, in the case of fixpoints we write 0dim(A) to refer to the null matrix
of a suitable dimension.

14 A. Díaz-Caro, M. Ivnisky, H. Melgratti, and B. Valiron

(Standard lambda terms)

LxMθ = θ(x)

Lλx.tMθ = χ
[a7→LtMθ,x=a]

LtrMθ = LtMθ # LrMθ
Lµx.tMθ = limn→∞

(
Lλx.tMθ #n 0dim(A)

)
(Quantum postulates)

LρnMθ = ρ

LUmtMθ = ULtMθU
†

LπmtMθ =
2m−1⊕
i=0

(
|i〉〈i|LtMθ|i〉〈i|

†)
Lt⊗ rMθ = LtMθ ⊗ LrMθ

(Control)

Lletcase◦ x = r in {t0, . . . , t2m−1}Mθ =
2m−1∑
i=0

tr (ρi) LtiMθ,x=ρ′i

with LrMθ =
2m−1⊕
i=0

ρi and ρ′i =
{ ρi

tr(ρi)
if tr (ρi) 6= 0

ρi if tr (ρi) = 0
(Distributions)

L{(pi, ti)}iMθ =
∑
i

piLtiMθ

The type A is the type of the interpreted term.
Fig. 4: Denotational semantics for the λµρ calculus.

Example 3.8. Let λx.t where t = letcase◦ y = π1|+〉〈+|1 in {x, |0〉〈0|1}. Note
that ` λx.t : 1(1. Then, Lλx.tM∅ = χ[f] with f = a 7→ LtMx=a for a ∈ L1M. We
first note that the measurement in t is independent of a, i.e., Lπ1|+〉〈+|1Mx=a =

Lπ1|+〉〈+|1M∅. By the interpretation of a measurement, Lπ1|+〉〈+|1M∅ = 1
2 |0〉〈0| ⊕

1
2 |1〉〈1|. By the interpretation of letcase, LtMx=a = 1

2 LxMx=a+ 1
2 |0〉〈0| =

1
2a+

1
2 |0〉〈0|.

Hence, f = a 7→ 1
2a+

1
2 |0〉〈0|. Consequently, χ[f] = χ[a7→ 1

2a]
⊕ 1

2 |0〉〈0|, i.e.,

χ[f] =

(
1
2 |0〉〈0|

1
2 |0〉〈1|

1
2 |1〉〈0|

1
2 |1〉〈1|

)
⊕ 1

2
|0〉〈0|

Consider now the application (λx.t)ρ1 with ρ = |0〉〈1|+|1〉〈1|. Then, L(λx.t)ρ1M =
χ[f] # ρ = 1

2 (|0〉〈0|+ |0〉〈1|+ |1〉〈1|).

Example 3.9. Let λx.t with t = letcase◦ y = x in {|0〉〈0|1, |1〉〈1|1}. Note that
` λx.t : (1, 1) (1. As in the previous example, Lλx.tM∅ = χ[g] with g = a 7→
LtMx=a for a ∈ L(1, 1)M. The canonical basis of the domain L(1, 1)M has the following
elements:

|0〉〈0| ⊕ 02 |1〉〈0| ⊕ 02 02 ⊕ |0〉〈1| 02 ⊕ |1〉〈1|
|0〉〈1| ⊕ 02 |1〉〈1| ⊕ 02 02 ⊕ |0〉〈0| 02 ⊕ |1〉〈0|

A model for affine, linear quantum lambda calculi with general recursion 15

Then, χ[g] is given by

χ[g] =

((
|0〉〈0| 02

02 |0〉〈0|

)
⊕
(
|1〉〈1| 02

02 |1〉〈1|

))
⊕ 02

Example 3.10. Consider the λµρ term in Example 2.4. Its interpretation is:

Lµx.letcase◦ z = π1|+〉〈+|1 in {x, |0〉〈0|1}M∅
= lim
n→∞

Lλx.letcase◦ z = π1|+〉〈+|1 in {x, |0〉〈0|1}M∅ #n 02

Note that Lλx.letcase◦ z = π1|+〉〈+|1 in {x, |0〉〈0|1}M∅ is χ[f] defined in Exam-
ple 3.8. Hence,

lim
n→∞

χ[f] #n 02 = lim
n→∞

1
2n02 +

n∑
i=1

1
2i |0〉〈0|

= lim
n→∞

(
1− 1

2n+1

1− 1
2

− 1

)
|0〉〈0| = |0〉〈0|

Example 3.11. The identity function has infinite fixpoints, all elements in the
domain. Its fixpoint is defined as the least element in the domain, i.e., the null
matrix:

Lµx.xM∅ = lim
n→∞

Lλx.xM∅ #n 02 = 02

3.5 Interpretation of λ[µ]
ρ

In order to show that the interpretation function is well-defined, in particular,
the existence of the limits in interpretation of fixpoints, we provide the following
interpretation for the incremental fixpoint in the λ[µ]ρ calculus

Lµnx.tMθ = Lλx.tMθ #n 0dim(A)

L⊥Mθ = 0dim(A)

4 Soundness of the interpretation

In this section we prove that our definition of interpretation is sound, i.e., the
interpretation function maps a term of type A to an element of the domain of
the type A. We first focus on the intermediate language λ[µ]ρ , which features
incremental fixpoints (Section 4.1). In Section 4.2 we address the full calculus
λµρ and show that the interpretation function is well-defined, i.e., the limits in
the interpretation of fixpoint terms exist. This is achieved by showing that the
interpretation function maps well-typed terms into matrices the traces of which
are bounded by the types of the terms. Such bounds allow us to show that the
proposed domains equipped with the Löwner order are CPOs.

16 A. Díaz-Caro, M. Ivnisky, H. Melgratti, and B. Valiron

4.1 Soundness of the interpretation of incremental fixpoints

We start by introducing some auxiliary notions and results that are instrumental
for establishing the soundness of the interpretation for the calculus with incre-
mental fixpoints. For the reviewer’s convenience, omitted proofs are provided in
Appendix A. Firstly, we show that the interpretation function behaves well with
respect to substitution, application and reduction. The following is the usual
expected substitution lemma.

Lemma 4.1 (Substitution). Lt[x := r]Mθ = LtMθ,x=LrMθ .

For application and reduction, we rely on the following property establishing
that mappings a 7→ LtMθ,x=a arising from the interpretation of terms λx.t are
affine or, equivalently, that a 7→ LtMθ,x=a − LtMθ,x=0dim(A)

is linear. The key point
here is that θ should map variables to values of the proper type. We say that a
valuation θ and a typing context Γ are consistent, written θ � Γ , if and only if
for every x : A ∈ Γ we have θ(x) ∈ LAM.

Lemma 4.2 (Linearity). If Γ, x : A ` t : B and θ � Γ , then for all a ∈ LAM
the function a 7→ LtMθ,x=a − LtMθ,x=0dim(A)

is linear.

By relying on linearity, we show that the application operator behaves as
expected with respect to the valuation used for the interpretation of terms.

Lemma 4.3 (Application). If Γ, x : A ` t : B and θ � Γ , then for all
a ∈ Cdim(A)×dim(A) we have Lλx.tMθ # a = LtMθ,x=a.

Also, we show that interpretation is stable with respect to the reduction
relation.

Lemma 4.4 (Reduction correctness). If Γ ` t : A, θ � Γ , and t r then
LtMθ = LrMθ.

We now concentrate on the soundness of the interpretation of abstractions.
We need to show that Γ ` λx.t : A(B implies Lλx.tMθ ∈ LA(BM for all valu-
ations θ consistent with Γ (Lemma 4.6). Recall that Lλx.tMθ = χ[a 7→LtMθ,x=a]. We
first show that the linear part of a 7→ LtMθ,x=a, i.e., a 7→ LtMθ,x=a − LtMθ,x=0dim(A)

,
is a completely positive map (CPM), i.e., it produces positive matrices when
applied to positive matrices.

Lemma 4.5. Let Γ, x : A ` t : B, and for all θ � Γ and a ∈ LAM, let LtMθ,x=a ∈
LBM. Then, the map F t,xθ�Γ = a 7→ LtMθ,x=a − LtMθ,x=0dim(A)

is a CPM.

By relying on the previous lemma, we have the following expected result
about the soundness of the interpretation for abstractions.

Lemma 4.6 (Soundness for abstractions). Let Γ, x : A ` t : B and θ � Γ ,
such that LtMθ,x=a, LtMθ,x=0dim(A)

∈ LBM. Then χ[a 7→LtMθ,x=a] ∈ LA(BM.

Next Lemma 4.7 extends the previous result for all arrow-typed terms.

A model for affine, linear quantum lambda calculi with general recursion 17

Lemma 4.7 (Soundness for arrow-type terms). Let Γ ` t : A (B and
θ � Γ . One of the following holds:

– There exist t1, . . . , tn and p1, . . . , pn such that for all i, x : A ` ti : B, pi > 0,∑n
i=1 pi ≤ 1 and LtMθ =

∑n
i=1 piLλx.tiM∅.

– LtMθ = 0dim(A(B)

The soundness for sums is stated below.

Lemma 4.8. Let LtiMθ ∈ LAM for i ∈ {1, . . . , n}. Then for any p1, . . . , pn such
that 0 < pi ≤ 1 with

∑n
i=1 pi ≤ 1, we have

∑n
i=1 piLtiMθ ∈ LAM.

Finally we state the soundness theorem.

Theorem 4.9 (Soundness). Let Γ ` t : A and θ � Γ , then LtMθ ∈ LAM.

4.2 Existence of fixpoints

We now proceed to show that limn→∞(Lλx.tMθ#n0dim(A)) actually exists for well-
typed terms (omitted proofs are in Appendix B). Firstly, we show that closed
terms are interpreted as matrices with bounded traces. While the traces of the
elements in the domains associated with the types n and (m,n) are bounded by
1 by definition, the traces of the elements in the domains associated with arrow
types are not. Since arrows A(B are interpreted in (LAM ⊗ LBM) ⊕ LBM, their
traces can be greater than 1. For example, the identity function in 1(1 has as
interpretation a matrix of trace 2, as illustrated below

Lλx.xM∅ = χ[a 7→LxMx=a] = (|00〉〈00|+ |01〉〈10|+ |10〉〈01|+ |11〉〈11|)⊕ 02

However, we can associate a bound, which we call size, to each type.

Definition 4.10 (Size of a type). Let A be a type, we write NA for its size,
which is inductively defined as follows:

– Nn = 1
– N(m,n) = 1
– NA(B = (dim(A) + 1)NB

Theorem 4.11. Let ` t : A, then tr (LtM∅) ≤ NA.

Next, we define the Löwner order (Definition 4.12) and show that abstractions
terms in the calculus with incremental fixpoints that have identity type preserve
this order (Lemma 4.13) and are continuous (Lemma 4.14).

Definition 4.12 (Löwner order). Let M,N be positive matrices. Then M v
N if and only if N −M is positive.

Lemma 4.13. Let Γ, x : A ` t : A and θ � Γ . Then for all a, b ∈ LAM, if a v b
we have Lλx.tMθ # a v Lλx.tMθ # b.

18 A. Díaz-Caro, M. Ivnisky, H. Melgratti, and B. Valiron

Lemma 4.14. Let χ ∈ Cnm×nm⊕Cm×m and let (Pn) be an increasing sequence
of positive matrices in Cn×n such that lim

n→∞
Pn = P . Then, χ is monotone and

lim
n→∞

χ # Pn = χ # P .

We recall that the least upper bound of an increasing sequence of square
complex matrices is equal to its limit (see [10, Remark 3.8]).

We have already shown that every term in the calculus with incremental
fixpoint is interpreted as a positive matrix (Theorem 4.9) the trace of which is
bounded by the size of its type (Theorem 4.11). Moreover, we have shown that
terms of type A(A are interpreted as continuous functions. This allows us to
show that the image of the interpretations form CPOs.

For any type A, we let DA = {M | M ∈ LAM and tr (M) ≤ NA}. By Theo-
rem 4.11, the image of the interpretation of closed terms ` t : A lies on DA. The
following lemma states that this set, with the Löwner order, forms a CPO.

Lemma 4.15. For any type A, (DA,v) is a complete partial order.

Finally, the following result states that the denotation of the fixpoint in λµρ
is well defined.

Theorem 4.16. If Γ ` λx.t : A(A and θ � Γ , then

lim
n→∞

(Lλx.tMθ #n 0dim(A)) ∈ DA

5 Adequacy

We now show that the denotational semantics of terms of the basic types n is
adequate, i.e., that the probability of termination of the evaluation of a term
coincides with the trace of its denotation. We start by establishing some useful
properties about the reduction relations of the λµρ calculus (−→) and of the λ[µ]ρ
calculus () which features incremental fixpoints (see Section 3.1). We shall
write → to denote either −→ or . In particular, we show that the probability
of termination does not decrease with reduction. For this reason, we associate
each term (seen as a distribution) with a probability of being a value, as defined
below.

Definition 5.1 (Probability of being a value). Let t = {(pi, ρni)}i∪{(qj , rj)}j
be a distribution such that ` t : n, and for all j either rj → r′j or rj = ⊥. The
subdistribution of values of t, written V (t), is {(pi, ρni)}i. Moreover, the proba-
bility of being a value, written P (t), is

∑
i pi.

We first note that P (t) = P (V (t)). Then, we show that the function P is not
decreasing with respect to term rewriting.

Lemma 5.2. Let ` t : n, if t → t′ then P (t) ≤ P (t′).

A model for affine, linear quantum lambda calculi with general recursion 19

Proof. We can write t as {(pi, ρni)}i∈I ∪ {(qj , rj)}j∈J where for all j ∈ J , either
rj → r′j or rj = ⊥. Then by definition P (t) =

∑
i pi. By hypothesis t → t′,

and so there must be a k ∈ J such that rk → {(q′l, r′l)}l∈L. Then we have
t′ = {(pi, ρni)}i∈I ∪ {(q′l, r′l)}l∈L ∪ {(qj , rj)}j∈J\{k}. Since V (t) ⊆ V (t

′), we have
that P (t) ≤ P (t′).

We define the probability of termination for the evaluation of a term as
the least upper bound of the set of the probabilities of being a value of all its
reductions (Definition 5.4).

Definition 5.3. Let t be a term. The set of reductions of t is defined as Red∗ (t) =
{r | t →∗ r}.

We remark that Red∗ (t) with the order given by reduction is a directed set.
With abuse of notation, we use P for its extension on sets, defined as follows,

P ({t1, t2, ...}) = {P (t1), P (t2), ...}

Definition 5.4 (Probability of termination). The probability of termination
of a term t, written P∞(t), is the least upper bound of the set of the probabilities
of being a value of its reductions, i.e., P∞(t) =

∨
P (Red∗ (t)).

Notice that P∞(t) is well defined because P (Red∗ (t)) is a directed set with
respect to ≤ in R≥0, and it is bounded by 1.

Finally, we prove that the that probability of termination coincides with the
trace of the interpretation of the term (Theorem 5.9). To prove it we use Lemmas
5.7 and 5.8.

Definition 5.5. Let t be a term in λµρ such that ` t : n, and N ∈ N0. We write
[t]N for the term obtained by substituting every occurrence of µ in t by µN . This
is a term in the incremental fixpoint calculus λ[µ]ρ .

Proposition 5.6. Let t be a term in λµρ such that ` t : n. Then, for all N ∈ N0,
P∞([t]N) ≤ P∞([t]N+1) and P∞([t]N) ≤ P∞(t).

Lemma 5.7. Let t be a term in λµρ such that ` t : n. Then,

lim
N→∞

P∞([t]N) = P∞(t)

Proof. We have to see that for all ε > 0 there is an N ∈ N such that for all
N ′ ≥ N , | P∞([t]N ′)− P∞(t) | < ε.

Because of the correspondence between Red∗ (t) and P (Red∗ (t)), there is an
ω-sequence (ti)i∈N ⊆ Red∗ (t) starting from t such that

P∞(t) =
∨
P (Red∗ (t)) = lim

i→∞
P (ti)

Then, for all ε > 0 there is a j ∈ N such that tj ∈ (ti)i∈N and

| P (tj)− P∞(t) | < ε (1)

20 A. Díaz-Caro, M. Ivnisky, H. Melgratti, and B. Valiron

Hence, there is an N ∈ N and a K ≤ N such that

[t]N
∗ [tj]K

∗ {(qi, i)}i∈Valn ∪

{
(1−

∑
i∈Valn

qi,⊥)

}

From this we have

P (tj) ≤
∑
i∈Valn

qi = P∞([t]N) ≤ P∞(t) (2)

From Equations (1) and (2) we have

| P∞([t]N)− P∞(t) |< ε (3)

Let N ′ ∈ N such that N ′ > N . By Proposition 5.6, we have that P∞([t]N) ≤
P∞([t]N ′) ≤ P∞(t), and from Equation (3)

| P∞(tN ′)− P∞(t) | < ε

Lemma 5.8. Let t be a term in λµρ such that ` t : n. Then,

lim
N→∞

tr (L[t]N M∅) = tr (LtM∅)

Proof. By Lemmas 3.6 and 3.7, and Theorem 4.16 we have

lim
N→∞

L[t]N M∅ = LtM∅

By trace linearity we have the result.

Finally, we can show that the definition of the denotational semantics is
adequate for terms of types n.

Theorem 5.9 (Adequacy). Let t be a term in λµρ such that ` t : n. Then,

P∞(t) = tr (LtM∅)

Proof. Assume that P∞(t) 6= tr (LtM∅). Then, there exists δ > 0 such that

| P∞(t)− tr (LtM∅) | > δ (4)

Take ε < 1
2δ. By Lemma 5.7, there is N1 ∈ N such that | P∞([t]N1)−P∞(t) | < ε

By Lemma 5.8, there is N2 ∈ N such that | tr (L[t]N2M∅)− tr (LtM∅) | < ε.
Let N = max{N1, N2}, so, the previous two inequations become

| P∞([t]N)− P∞(t) | < ε (5)
| tr (L[t]N M∅)− tr (LtM∅) | < ε (6)

Since [t]N ∗ {(p, ρn), (1− p,⊥)}, by Lemma 4.4 we have

L[t]N M∅ = L{(p, ρn), (1− p,⊥)}M∅ = p.ρ

A model for affine, linear quantum lambda calculi with general recursion 21

and so tr (L[t]N M∅) = tr (p.ρ)= p. In addition, by Lemma 5.2, we have that
P∞([t]N) = P ({(p, ρn), (1− p,⊥)})= p. Hence, we have

P∞([t]N) = tr (L[t]N M∅) (7)

Then, from Equations (6) and (7) we have,

| P∞([t]N)− tr (LtM∅) | < ε (8)

Therefore, from Equations (5) and (8),

| P∞(t)− tr (LtM∅) | < 2ε < δ

which contradicts Equation (4). Hence, P∞(t) = tr (LtM∅).

We remark that the adequacy result concerns only basic types n. It does not
hold in general because, e.g., tr (Lλx.xM∅) = 2.

6 Conclusion

In this paper, we presented a finite-dimensional semantics for quantum higher-
order computation with recursion. On one hand, to stay finite-dimensional we
only account for non-duplicable elements. On the other hand, to be able to
represent general recursion we allow the discarding of variables: the model is
thus affine. In particular, we show how to extend the Choi-construction to linear,
affine maps. The model is justified by the λ-calculus λ◦ρ, providing a concrete
operational account of what affine, linear higher-order computation represents.

References

1. Borgna, A.: Simulación del lambda cálculo de matrices de densidad en el lambda
cálculo cuántico de Selinger y Valiron. Master’s thesis, Universidad de Buenos
Aires (2019)

2. Choi, M.D.: Completely positive linear maps on complex matrices. Linear Algebra
and its Applications 10(3), 285–290 (1975)

3. Clairambault, P., De Visme, M., Winskel, G.: Game semantics for quantum pro-
gramming. Proceedings of the ACM on Programming Languages 3 (POPL) (2019)

4. Clairambault, P., de Visme, M.: Full abstraction for the quantum lambda-calculus.
Proceedings of the ACM on Programming Languages 4 (POPL) (2020)

5. Díaz-Caro, A.: A lambda calculus for density matrices with classical and proba-
bilistic controls. In: Chang, B.Y.E. (ed.) Programming Languages and Systems
(APLAS 2017). Lecture Notes in Computer Science, vol. 10695, pp. 448–467.
Springer, Cham (2017)

6. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press (2011)

7. Pagani, M., Selinger, P., Valiron, B.: Applying quantitative semantics to higher-
order quantum computing. SIGPLAN Notices (POPL) 49(1), 647–658 (2014)

22 A. Díaz-Caro, M. Ivnisky, H. Melgratti, and B. Valiron

8. Péchoux, R., Perdrix, S., Rennela, M., Zamdzhiev, V.: Quantum programming
with inductive datatypes: Causality and affine type theory. In: Goubault-Larrecq,
J., König, B. (eds.) Foundations of Software Science and Computation Structures.
pp. 562–581 (2020)

9. Romero, L.R.: Una extensión polimórfica para los λ-cálculos cuánticos λρ y λ◦ρ.
Master’s thesis, Universidad de Buenos Aires (2020)

10. Selinger, P.: Towards a quantum programming language. Math-
ematical Structures in Computer Science 14(4), 527–586 (2004).
https://doi.org/10.1017/S0960129504004256

11. Selinger, P., Valiron, B.: A lambda calculus for quantum computation with classical
control. Mathematical Structures in Computer Science 16(3), 527–552 (2006)

12. Selinger, P., Valiron, B.: On a fully abstract model for a quantum lin-
ear functional language. In: Proceedings of the 4th International Workshop
on Quantum Programming Languages, QPL 2006, Oxford. Electronic Notes
in Theoretical Computer Science, vol. 210, pp. 123–137. Elsevier (2008).
https://doi.org/10.1016/j.entcs.2008.04.022

https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1016/j.entcs.2008.04.022

A model for affine, linear quantum lambda calculi with general recursion 23

A Proofs of results in Section 4.1

This section is devoted to the proofs of results in Section 4.1.

A.1 Proof of Lemma 4.1

Lemma 4.1 (Substitution). Lt[x := r]Mθ = LtMθ,x=LrMθ .

Proof. A routine proof by structural induction on t.

A.2 Proof of Lemma 4.2

Lemma 4.2 (Linearity). If Γ, x : A ` t : B and θ � Γ , then for all a ∈ LAM
the function a 7→ LtMθ,x=a − LtMθ,x=0dim(A)

is linear.

Proof. Let n = dim(A). Then, note that the function a 7→ LtMθ,x=a− LtMθ,x=0n is
linear if the equality below holds.

LtMθ,x=αA+βB − LtMθ,x=0n = α(LtMθ,x=A − LtMθ,x=0n) + β(LtMθ,x=B − LtMθ,x=0n)

which, by rearranging terms, can be rewritten as follows.

LtMθ,x=αA+βB = αLtMθ,x=A + βLtMθ,x=B − (α+ β − 1)LtMθ,x=0n (9)

We show that Equation (9) holds by induction on the structure of t. Few inter-
esting cases are shown below.

– Let t = rs. Hence, Equation (9) boils down to

LrsMθ,x=αA+βB = αLrsMθ,x=A + βLrsMθ,x=B − (α+ β − 1)LrsMθ,x=0n (10)

Since the type system is affine, either x ∈ FV(r) or x ∈ FV(s).
• Case x ∈ FV(r): By applying the definition of L_M_ and by noting that x 6∈

FV(s) implies LsMθ,x=αA+βB = LsMθ,x=0n = LsMθ, we rewrite Equation (10)
as follows:

LrMθ,x=αA+βB # LsMθ = α(LrMθ,x=A # LsMθ) + β(LrMθ,x=B # LsMθ) (11)
− (α+ β − 1)(LrMθ,x=0n # LsMθ)

that holds as follows.

LrMθ,x=αA+βB # LsMθ
IH
= (αLrMθ,x=A + βLrMθ,x=B − (α+ β − 1)LrMθ,x=0n) # LsMθ

(3.7)
= α(LrMθ,x=A # LsMθ) + β(LrMθ,x=B # LsMθ)

− (α+ β − 1)(LrMθ,x=0n # LsMθ)

24 A. Díaz-Caro, M. Ivnisky, H. Melgratti, and B. Valiron

• Case x ∈ FV(s) follows analogously but relies on Lemma 3.6 instead of
Lemma 3.7.

– Let t = {(pi, ti)}i, with
∑
i

pi = 1 and 0 < pi ≤ 1 for all i. Hence, Equation (9)

amounts to:

L{(pi, ti)}iMθ,x=αA+βB = αL{(pi, ti)}iMθ,x=A + βL{(pi, ti)}iMθ,x=B
− (α+ β − 1)L{(pi, ti)}iMθ,x=0n

Rewriting the left-hand side:

L{(pi, ti)}iMθ,x=αA+βB

=
∑
i

piLtiMθ,x=αA+βB

IH
=
∑
i

pi(αLtiMθ,x=A + βLtiMθ,x=B − (α+ β − 1)LtiMθ,x=0n)

=α
∑
i

piLtiMθ,x=A + β
∑
i

piLtiMθ,x=B − (α+ β − 1)
∑
i

piLtiMθ,x=0n

=αL{(pi, ti)}iMθ,x=A + βL{(pi, ti)}iMθ,x=B − (α+ β − 1)L{(pi, ti)}iMθ,x=0n

– Let t = letcase◦ y = r in {t1, . . . , tm}. By definition of L_M_, Equation (9)
boils down to:

m∑
i=0

tr
(
ρiαA+βB

)
LtiM

θ,x=αA+βB,y= ˜ρiαA+βB

= α

m∑
i=0

tr
(
ρiA
)
LtiMθ,x=A,y=ρ̃iA

+ β

m∑
i=0

tr
(
ρiB
)
LtiMθ,x=B,y=ρ̃iB

− (α+ β − 1)

m∑
i=0

tr
(
ρi0
)
LtiMθ,x=0n,y=ρ̃i0

(12)

where

LrMθ,x=αA+βB =
⊕m

i=1 ρ
i
αA+βB LrMθ,x=A =

⊕m
i=1 ρ

i
A

LrMθ,x=B =
⊕m

i=1 ρ
i
B LrMθ,x=0n =

⊕m
i=1 ρ

i
0

φ̃ =

{
0n′ if tr (φ) = 0
φ

tr(φ) otherwise (13)

Since our type system is affine, if x ∈ FV(t) then either x ∈ FV(r) or x ∈ FV(ti)
for some i.

A model for affine, linear quantum lambda calculi with general recursion 25

• Case x ∈ FV(r):
For the next part we need the following equalities (14-17).
By the induction hypothesis on r we have:

LrMθ,x=αA+βB = αLrMθ,x=A + βLrMθ,x=B − (α+ β − 1)LrMθ,x=0n

Thus, for all i we have:

ρiαA+βB = αρiA + βρiB − (α+ β − 1)ρi0 (14)

By applying the trace to both sides of the equation:

tr
(
ρiαA+βB

)
= αtr

(
ρiA
)
+ βtr

(
ρiB
)
− (α+ β − 1)tr

(
ρi0
)

(15)

In general for all ρ, by the induction hypothesis on ti (with α = 1
tr(ρ) , A = ρ,

β = 0, and n′ the correct dimension) we have that:

LtiMθ,y= ρ
tr(ρ)

=
1

tr (ρ)
LtiMθ,y=ρ − (

1

tr (ρ)
+ 0− 1)LtiMθ,y=0n′

Therefore,

LtiMθ,y= ρ
tr(ρ)

=
1

tr (ρ)
LtiMθ,y=ρ + (1− 1

tr (ρ)
)LtiMθ,y=0n′

Multiplying both sides by tr (ρ) we have:

tr (ρ) LtiMθ,y= ρ
tr(ρ)

= LtiMθ,y=ρ + (tr (ρ)− 1)LtiMθ,y=0n′ (16)

From Equation (14) we have that:

LtiMθ,y=ρiαA+βB
= LtiMθ,y=αρiA+βρiB−(α+β−1)ρi0

By the induction hypothesis on the term in the right-hand-side, with α′ = α,
A′ = ρiA, β

′ = 1, B′ = βρiB − (α+ β − 1)ρi0, we have that:

LtiMθ,y=ρiαA+βB
= αLtiMθ,y=ρiA + LtiMθ,y=βρiB−(α+β−1)ρi0 − αLtiMθ,y=0n′

By the induction hypothesis on the second summand on the right-hand side
with α′ = β, A′ = ρiB , β

′ = −(α+ β − 1) y B′ = ρi0 we have:

LtiMθ,y=ρiαA+βB
= αLtiMθ,y=ρiA + βLtiMθ,y=ρiB − (α+ β − 1)LtiMθ,y=ρi0 (17)

By definition, and since x ∈ FV(r) but x /∈ FV(ti) for all i, to show that
Equation (12) holds we want to show that:

n∑
i=1

tr
(
ρiαA+βB

)
LtiM

θ,y= ˜ρiαA+βB

=α

n∑
i=1

tr
(
ρiA
)
LtiMθ,y=ρ̃iA

26 A. Díaz-Caro, M. Ivnisky, H. Melgratti, and B. Valiron

+ β

n∑
i=1

tr
(
ρiB
)
LtiMθ,y=ρ̃iB

− (α+ β − 1)

n∑
i=1

tr
(
ρi0
)
LtiMθ,y=ρ̃i0

We are going to show equality of the summation term by term, meaning
that for all i we have:

tr
(
ρiαA+βB

)
LtiM

θ,y= ˜ρiαA+βB

=αtr
(
ρiA
)
LtiMθ,y=ρ̃iA

(18)

+ βtr
(
ρiB
)
LtiMθ,y=ρ̃iB

− (α+ β − 1)tr
(
ρi0
)
LtiMθ,y=ρ̃i0

We show that Equation (18) holds by case analysis on whether the traces
tr
(
ρiαA+βB

)
, tr

(
ρiA
)
, tr

(
ρiB
)
, and tr

(
ρi0
)
are equal to or different from

0. We illustrate the most interesting case since the remaining ones follow
analogously.
1. Case tr

(
ρiαA+βB

)
6= 0, tr

(
ρiA
)
6= 0, tr

(
ρiB
)
6= 0, tr

(
ρi0
)
6= 0. Then,

Equation (18) boils down to:

tr
(
ρiαA+βB

)
LtiM

θ,y=
ρi
αA+βB

tr(ρiαA+βB)

=αtr
(
ρiA
)
LtiM

θ,y=
ρi
A

tr(ρiA)

+ βtr
(
ρiB
)
LtiM

θ,y=
ρi
B

tr(ρiB)

− (α+ β − 1)tr
(
ρi0
)
LtiM

θ,y=
ρi0

tr(ρi0)

By Equation (16),

LtiMθ,y=ρiαA+βB
+ (tr

(
ρiαA+βB

)
− 1)LtiMθ,y=0n′

= α(LtiMθ,y=ρiA + (tr
(
ρiA
)
− 1)LtiMθ,y=0n′)

+ β(LtiMθ,y=ρiB + (tr
(
ρiB
)
− 1)LtiMθ,y=0n′)

− (α+ β − 1)(LtiMθ,y=ρi0 + (tr
(
ρi0
)
− 1)LtiMθ,y=0n′)

By reordering terms,

LtiMθ,y=ρiαA+βB

= αLtiMθ,y=ρiA + βLtiMθ,y=ρiB − (α+ β − 1)LtiMθ,y=ρi0
+ (−tr

(
ρiαA+βB

)
+ αtr

(
ρiA
)
+ βtr

(
ρiB
)

− (α+ β − 1)tr
(
ρi0
)
)LtiMθ,y=0n′

By Equation (15), the last term is null. Hence, Equation (17) holds.

LtiMθ,y=ρiαA+βB
= αLtiMθ,y=ρiA + βLtiMθ,y=ρiB − (α+ β − 1)LtiMθ,y=ρi0

A model for affine, linear quantum lambda calculi with general recursion 27

• Case x 6∈ FV(r). Assume

LrMθ =
n⊕
i=1

ρi

From Equation (12), in this case we want to show that:

n∑
i=1

tr
(
ρi
)
LtiMθ,x=αA+βB,y=ρ̃i

= α

n∑
i=1

tr
(
ρi
)
LtiMθ,x=A,y=ρ̃i

+ β

n∑
i=1

tr
(
ρi
)
LtiMθ,x=B,y=ρ̃i

− (α+ β − 1)

n∑
i=1

tr
(
ρi
)
LtiMθ,x=0n,y=ρ̃i

Let _̃ as defined in Equation (13), we will show that for all i the following
holds:

tr
(
ρi
)
LtiMθ,x=αA+βB,y=ρ̃i

=αtr
(
ρi
)
LtiMθ,x=A,y=ρ̃i + βtr

(
ρi
)
LtiMθ,x=B,y=ρ̃i

− (α+ β − 1)tr
(
ρi
)
LtiMθ,x=0n,y=ρ̃i

If tr
(
ρi
)
= 0, it holds trivially. Otherwise it can be proven that for all i:

LtiMθ,x=αA+βB,y= ρi

tr(ρi)
=αLtiMθ,x=A,y= ρi

tr(ρi)
+ βLtiMθ,x=B,y= ρi

tr(ρi)

− (α+ β − 1)LtiMθ,x=0n,y=
ρi

tr(ρi)

Let θ′ = θ ∪ {y = ρi

tr(ρi)}, then the previous equation is the same as:

LtiMθ′,x=αA+βB = αLtiMθ′,x=A + βLtiMθ′,x=B − (α+ β − 1)LtiMθ′,x=0n

This holds by the induction hypothesis on ti.

A.3 Proof of Lemma 4.3

Lemma 4.3 (Application). If Γ, x : A ` t : B and θ � Γ , then for all a ∈
Cdim(A)×dim(A) we have Lλx.tMθ # a = LtMθ,x=a.

Proof. By definition we have:

Lλx.tMθ = χ[a7→LtMθ,x=a]

=

LtMθ,x=EA11 − LtMθ,x=0dim(A)
. . . LtMθ,x=EA1n − LtMθ,x=0dim(A)

...
. . .

...
LtMθ,x=EAn1

− LtMθ,x=0dim(A)
. . . LtMθ,x=EAnn − LtMθ,x=0dim(A)

⊕ LtMθ,x=0dim(A)

28 A. Díaz-Caro, M. Ivnisky, H. Melgratti, and B. Valiron

Let {EAij} be the canonical basis for Cdim(A)×dim(A), decomposing a on this
basis and applying Lλx.tMθ through # :

Lλx.tMθ # a =Lλx.tMθ #

 n∑
i=1

n∑
j=1

aijE
A
ij


=

n∑
i=1

n∑
j=1

aij

(
LtMθ,x=EAij − LtMθ,x=0dim(A)

)
+ LtMθ,x=0dim(A)

By Lemma 4.2, LtMθ,x=EAij − LtMθ,x=0dim(A)
is linear on EAij , then we have:

Lλx.tMθ # a = LtMθ,x=∑
ij aijE

A
ij
− LtMθ,x=0dim(A)

+ LtMθ,x=0dim(A)
= LtMθ,x=a

A.4 Proof of Lemma 4.4

We first need an auxiliary lemma. Let θ be a valuation and Γ a typing context.
θ �dim Γ if and only if for every pair (x,A) ∈ Γ , we have dim(θ(x)) = dim(A).

Lemma A.1. Let Γ ` t : A and θ �dim Γ , then dim(LtMθ) = dim(A).

Proof. By induction on the structure of t. We illustrate a few interesting cases

– Let t = x. Hence, x : A ∈ Γ . Since θ �dim Γ , we have that dim(LxMθ) =
dim(θ(x)) = dim(A).

– Let t = λx.u. In this case A = B (C. By definition of L_M_, we have
Lλx.uMθ = χ[a 7→LuMθ,x=a]. Let {E

B
ij} be the canonical basis of Cdim(B)×dim(B).

By inversion, we have Γ, x : B ` u : C. Moreover, θ �dim Γ , dim(EBij) =
dim(B) and dim(0dim(B)) = dim(B). Hence,

θ ∪ {x = EBij} �dim Γ, x : B

θ ∪ {x = 0dim(B)} �dim Γ, x : B

Then by the induction hypothesis on Γ, x : B ` u : C:

dim(LuMθ,x=EBij) = dim(C)

dim(LuMθ,x=0dim(B)
) = dim(C)

By the definition of χ[a7→LuMθ,x=a], we have that

dim(Lλx.uMθ) = dim(B) dim(C) + dim(C) = dim(B(C).

– Let t = letcase◦ x = r in {t0, . . . , t2m−1}. Let Γ0, . . . , Γ2m−1, Γ
′ = Γ such

that Γi, x : n ` ti : A for all i and Γ ′ ` r : (m,n). Therefore θ �dim Γ ′. By
applying the induction hypothesis, dim(LrMθ) = dim((m,n)) = 2n+m. For
0 ≤ i ≤ 2m−1, let ρi be the i-th 2n×2n sub-matrix of LrMθ’s non-superposing
block diagonal. Define ρ′i as ρi if tr (ρi) = 0, and ρi

tr(ρi)
otherwise. Clearly,

dim(ρ′i) = 2n for all i. Hence, θ∪{x = ρ′i} �dim Γi, x : n for all i. By applying
the induction hypothesis, dim(ti) = dim(A). Therefore, dim(Lletcase◦ x =

r in {t0, . . . , t2m−1}Mθ) = dim(
∑2m−1
i=0 tr (ρi) LtiMθ,x=ρ′i) = dim(A).

A model for affine, linear quantum lambda calculi with general recursion 29

Lemma 4.4 (Reduction correctness). If Γ ` t : A, θ � Γ , and t r then
LtMθ = LrMθ.

Proof. By induction on the derivation of . Most of the cases follows by routine
induction. We report some representative cases below.

– (λx.t)r t[x := r]

In this case we want to show that L(λx.t)rMθ = Lt[x := r]Mθ. By definition
we have that L(λx.t)rMθ = Lλx.tMθ # LrMθ. By Lemma 4.3 this is equal to
LtMθ,x=LrMθ . By Lemma 4.1 it holds that LtMθ,x=LrMθ = Lt[x := r]Mθ.

– µ0x.t ⊥
In this case we want to show that Lµ0x.tMθ = L⊥Mθ. By definition, we have
Lµ0x.tMθ = Lλx.tMθ #0 0dim(A). This is equal to 0dim(A) = L⊥Mθ.

– µn+1x.t t[x := µnx.t]

In this case we want to show that Lµn+1x.tMθ = Lt[x := µnx.t]Mθ. By definition
we have Lµn+1x.tMθ = Lλx.tMθ #n+1 0dim(A). This is the same as:

Lλx.tMθ # (Lλx.tMθ #n 0dim(A))

By the induction hypothesis, this is equal to Lλx.tMθ # Lµnx.tMθ. Since Γ `
µn+1x.t : A, by inversion Γ, x : A ` t : A, and using rule µ we have Γ `
µnx.t : A. Since θ � Γ we also have θ �dim Γ and using Lemma A.1,
dim(Lµnx.tMθ) = dim(A). Using Lemma 4.3 we have Lλx.tMθ # Lµnx.tMθ =
LtMθ,x=Lµnx.tMθ . Using Lemma 4.1, this is equal to Lt[x := µnx.t]Mθ.

– letcase◦ x = πmρn in {t0, . . . , t2m−1} {(pi, ti[x := ρni])}i/pi 6=0 where:

pi = tr
(
|i〉〈i|ρ|i〉〈i|

†)
ρi =

|i〉〈i|ρ|i〉〈i|
†

pi

In this case we want to show that:

Lletcase◦ x = πmρn in {t0, . . . , t2m−1}Mθ = L{(pi, ti[x := ρni])}i/pi 6=0Mθ

Since LπmρnMθ =
⊕2m−1

i=0 |i〉〈i|ρ|i〉〈i|
†
, we have

Lletcase◦ x = πmρn in {t0, . . . , t2m−1}Mθ =
2m−1∑
i=0

piLtiMθ,x=ρi .

Moreover, L{(pi, ti[x := ρni])}i/pi 6=0Mθ =
∑
i piLti[x := ρni]Mθ by the defini-

tion of L_M_. By Lemma 4.1,
∑
i piLti[x := ρni]Mθ =

∑
i piLtiMθ,x=Lρni Mθ .

Since Lρni Mθ = ρi for every valuation θ, we have to
∑
i piLtiMθ,x=Lρni Mθ =∑

i piLtiMθ,x=ρi .

30 A. Díaz-Caro, M. Ivnisky, H. Melgratti, and B. Valiron

A.5 Proof of Lemma 4.5

Lemma 4.5. Let Γ, x : A ` t : B, and for all θ � Γ and a ∈ LAM, let LtMθ,x=a ∈
LBM. Then, the map F t,xθ�Γ = a 7→ LtMθ,x=a − LtMθ,x=0dim(A)

is a CPM.

Proof. We proceed by induction on the structure of t.

– Let t = y 6= x, then θ = θ′∪{y = c} and F y,xθ�Γ,y:C = a 7→ (c− c) = 0n, which
is completely positive.

– Let t = x, then F x,xθ�Γ = a 7→ (a− 0n) = In, which is completely positive.
– Let t = λy.r. Then, B = C (D, and, by inversion , Γ, x : A, y : C ` r : D.

Hence, by the induction hypothesis, we have that F r,yτ�Γ,x:A and F r,xδ�Γ,y:C are
CPMs.
We need to prove that Fλy.r,xθ�Γ is a CPM. This map is defined by

Fλy.r,xθ�Γ (a)

= Lλy.rMθ,x=a − Lλy.rMθ,x=0n

= χ[c7→LrMθ,x=a,y=c] −χ[c7→LrMθ,x=0n,y=c]

= χ[c7→LrMθ,x=a,y=c−LrMθ,x=a,y=0m] ⊕ LrMθ,x=a,y=0m (with m = dim(C))

−χ[c7→LrMθ,x=0n,y=c−LrMθ,x=0n,y=0m] ⊕ LrMθ,x=0n,y=0m

= χ[c7→(LrMθ,x=a,y=c−LrMθ,x=a,y=0m)−(LrMθ,x=0n,y=c−LrMθ,x=0n,y=0m)]

⊕ (LrMθ,x=a,y=0m − LrMθ,x=0n,y=0m)

= χ[F r,y
θ∪{x=a}�Γ,x:A−F

r,y
θ∪{x=0n}�Γ,x:A

] ⊕ F
r,x
θ∪{y=0m}�Γ,y:C(a)

Let

G(b) = F r,yθ∪{x=b}�Γ,x:A = c 7→ LrMθ,x=b,y=c − LrMθ,x=b,y=0n

H(a) = G(a)−G(0n)

Since G is a CPM, H(a) is also a CPM. Then,

χ[F r,y
θ∪{x=a}�Γ,x:A−F

r,y
θ∪{x=0n}�Γ,x:A

] = χ[H(a)]

is a CPM. Finally, the sum of CPMs is a CPM.
– Let t = rs. Then, by inversion, there are two cases:
• Γ, x : A ` r : C (D and ∆ ` s : C. Hence, by the induction hypothesis,

we have that F r,xγ�Γ is a CPM.
We need to prove that F rs,xθ�Γ,∆, where θ = γ, δ with γ � Γ and δ � ∆, is
a CPM.

F rs,xθ�Γ,∆(a) = LrsMθ,x=a − LrsMθ,x=0n

A model for affine, linear quantum lambda calculi with general recursion 31

= LrMθ,x=a # LsMθ,x=a − LrMθ,x=0n # LsMθ,x=0n

= LrMγ,x=a # LsMδ − LrMγ,x=0n # LsMδ
(Lemma 3.7) = (LrMγ,x=a − LrMγ,x=0n) # LsMδ

= F r,xγ�Γ (a) # LsMδ

Notice that since F r,xγ�Γ (a) is a Choi matrix, then the application #
is just the standard application, and since LsMδ ∈ LBM, it is positive, so
F r,xγ�Γ (a) # LsMδ is a CPM.

• Γ ` r : C (D and ∆,x : A ` s : C Hence, by the induction hypothesis,
we have that F s,xδ�∆ is a CPM.
We need to prove that F rs,xθ�Γ,∆, where θ = γ, δ with γ � Γ and δ � ∆, is
a CPM.

F rs,xθ�Γ,∆(a) = LrsMθ,x=a − LrsMθ,x=0n

= LrMθ,x=a # LsMθ,x=a − LrMθ,x=0n # LsMθ,x=0n

= LrMγ # LsMδ,x=a − LrMγ # LsMδ,x=0n

(Lemma 3.6) = LrMγ # (LsMδ,x=a − LsMδ,x=0n)− P⊥(LrMγ)
=M # F s,xδ�∆(a)−M2

(with LrMγ =M =M1 ⊕M2)

As M ∈ (LAM⊗ LBM)⊕ LBM is a positive matrix by the induction hypoth-
esis, we have that:
1. M1 ∈ LAM ⊗ LBM is a positive matrix ⇐⇒ it is the characteristic

matrix for some CPM g : LAM→ LBM.
2. M2 ∈ LBM is a positive matrix.
Then M # F s,xδ�∆(a) −M2 = g(F s,xδ�∆(a)) +M2 −M2 = g(F s,xδ�∆(a)) is a
CPM by composition.

– Let t = µny.r. Then, by inversion, Γ, y : B, x : A ` r : B. Hence, by the
induction hypothesis, we have that F r,yθ,x=a�Γ,x:A and F r,yθ,y=b�Γ,y:B are CPMs.
We need to prove that Fµny.r,xθ�Γ is a CPM.

Fµny.r,xθ�Γ (a) = Lµny.rMθ,x=a − Lµny.rMθ,x=0m

= (Lλy.rMθ,x=a #n 0m)− (Lλy.rMθ,x=0m #n 0m)

(Lemma 3.7) = (Lλy.rMθ,x=a − Lλy.rMθ,x=0m) #n 0m

= Fλy.r,xθ�Γ (a) #n 0m

With the same reasoning as in case t = λy.r, we have that Fλy.r,xθ�Γ (a) is a
CPM. Therefore, Fµny.r,xθ�Γ is a CPM.

– Let t = ⊥. Hence, we have to prove that F⊥,xθ�Γ is a CPM.

F⊥,xθ�Γ (a) = L⊥Mθ,x=a − L⊥Mθ,x=0n = 0m − 0m = 0m

Therefore, F⊥,xθ�Γ is a CPM.

32 A. Díaz-Caro, M. Ivnisky, H. Melgratti, and B. Valiron

– Let t = ρn. Hence, we have to prove that F ρ,xθ�Γ is a CPM.

F ρ,xθ�Γ (a) = LρnMθ,x=a − LρnMθ,x=0n = ρ− ρ = 02n

Therefore, F ρ,xθ�Γ is a CPM.
– Let t = Umr. Then, by inversion, B = n and Γ, x : A ` r : n. Hence, by the

induction hypothesis F r,xθ�Γ is a CPM.
We need to prove that FUr,xθ�Γ is a CPM.

FU
mr,x

θ�Γ (a) = LUmrMθ,x=a − LUmrMθ,x=0m

= ULrMθ,x=aU
† − ULrMθ,x=0mU

†

= U (LrMθ,x=a − LrMθ,x=0m)U
†

= UF r,xθ�Γ (a)U
†

which is a CPM since F r,xθ�Γ (a) is a CPM.
– Let t = πmr. Then, by inversion, B = n and Γ, x : A ` r : n. Hence, by the

induction hypothesis F r,xθ�Γ is a CPM.

Fπ
mr,x

θ�Γ (a) = LπmrMθ,x=a − LπmrMθ,x=0k

=

2m−1⊕
i=0

(
|i〉〈i|LrMθ,x=a|i〉〈i|

†)
−

2m−1⊕
i=0

(
|i〉〈i|LrMθ,x=0k |i〉〈i|

†)
=

2m−1⊕
i=0

(
|i〉〈i|LrMθ,x=a|i〉〈i|

†
− |i〉〈i|LrMθ,x=0k |i〉〈i|

†)
=

2m−1⊕
i=0

(
|i〉〈i| (LrMθ,x=a − LrMθ,x=0k) |i〉〈i|

†)
=

2m−1⊕
i=0

(
|i〉〈i|F r,xθ�Γ (a)|i〉〈i|

†)
which is a CPM since F r,xθ�Γ (a) is a CPM.

– Let t = r ⊗ s. Then, by inversion B = n+m and there are two cases:
• Γ1, x : A ` r : n and Γ2 ` s : m, with Γ = Γ1, Γ2. Hence, by the

induction hypothesis, F r,xθ1�Γ1
is a CPM.

We need to prove that F r⊗s,xθ�Γ , with θ = θ1, θ2, is a CPM.

F r⊗s,xθ�Γ (a) = Lr ⊗ sMθ,x=a − Lr ⊗ sMθ,x=0k

= LrMθ,x=a ⊗ LsMθ,x=a − LrMθ,x=0k ⊗ LsMθ,x=0k

= (LrMθ1,x=a − LrMθ1,x=0k)⊗ LsMθ2
= F r,xθ1�Γ1

(a)⊗ LsMθ2

A CPM tensor a positive maps is a CPM.

A model for affine, linear quantum lambda calculi with general recursion 33

• Γ1 ` r : n and Γ2, x : A ` s : m. This case is analogous to the previous
case.

– Let t = letcase◦ y = r in {t0, . . . t2m−1}. By inversion, for all i, ∆i, y : n `
ti : B and Ξ ` r : (m,n), with Γ, x : A = ∆0, . . . ,∆2m−1, Ξ.
Cases:
• Ξ = Ξ ′, x = a. Hence, by the induction hypothesis, F r,xξ�Ξ = LrMξ,x=a −

LrMξ,x=0n is a CPM.
We need to prove that if θ = δ1, . . . , δ2m−1, ξ, F

letcase◦ y=r in {t0,...,t2m−1},x
θ�Γ

is a CPM.
Let LrMθ,x=c =

⊕2m−1
i=0 ρi(c). Then,

F
letcase◦ y=r in {t0,...,t2m−1},x
θ�Γ (a)

= Lletcase◦ y = r in {t0, . . . , t2m−1}Mθ,x=a
− Lletcase◦ y = r in {t0, . . . , t2m−1}Mθ,x=0n

=

(
2m−1∑
i=0

tr
(
ρi(a)

)
LtiMθ,x=a,y=ρi(a)

)

−

(
2m−1∑
i=0

tr
(
ρi(0n)

)
LtiMθ,x=0n,y=ρi(0n)

)

=

2m−1∑
i=0

(
tr
(
ρi(a)

)
LtiMδi,y=ρi(a) − tr

(
ρi(0n)

)
LtiMδi,y=ρi(0n)

)
w

2m−1∑
i=0

(
tr
(
ρi(a)

) (
LtiMδi,y=ρi(a) − LtiMδi,y=ρi(0n)

))
w

2m−1∑
i=0

(
tr
(
ρi(a)

) (
LtiMδi,y=ρi(a) − LtiMδi,y=0n

))
=

2m−1∑
i=0

tr
(
ρi(a)

)
F ti,yδi�Γ

(a)

Positive linear combination of CPMs is a CPM.
• For some k, ∆k = ∆′k, x = a Hence, by the induction hypothesis, F tk,xδk�∆k

is a CPM.
We need to prove that if θ = δ1, . . . , δ2m−1, ξ, F

letcase◦ y=r in {t0,...,t2m−1},x
θ�Γ

is a CPM.
Let LrMξ =

⊕2m−1
i=0 ρi. Then,

F
letcase◦ y=r in {t0,...,t2m−1},x
θ�Γ (a)

= Lletcase◦ y = r in {t0, . . . , t2m−1}Mθ,x=a
− Lletcase◦ y = r in {t0, . . . , t2m−1}Mθ,x=0n

=

(
2m−1∑
i=0

tr (ρi) LtiMθ,x=a,y=ρi

)

34 A. Díaz-Caro, M. Ivnisky, H. Melgratti, and B. Valiron

−

(
2m−1∑
i=0

tr (ρi) LtiMθ,x=0n,y=ρi

)
= LtkMδk,y=ρk − LtkMδk,y=ρk
= F tk,xδk�∆k

– Let t = {(pi, ti)}i. Then, by inversion, for all i, Γ, x : A ` ti : B. Hence, by
the induction hypothesis, F ti,xθ�Γ are CPMs.
We need to prove that F {(pi,ti)}i,xθ�Γ is a CPM.

F
{(pi,ti)}i,x
θ�Γ (a) = L{(pi, ti)}iMθ,x=a − L{(pi, ti)}iMθ,x=0n

=
∑
i

piLtiMθ,x=a −
∑
i

piLtiMθ,x=0n

=
∑
i

pi (LtiMθ,x=a − LtiMθ,x=0n)

=
∑
i

piF
ti,x
θ�Γ (a)

which is a CPM since each F ti,xθ�Γ (a) are CPMs.

A.6 Proof of Lemma 4.6

We first restate the following theorem from [10, Theorem 6.5].

Theorem A.2. Let F : Cn×n → Cm×m be a linear operator, and let χF ∈
Cnm×nm be its characteristic matrix.

(a) F if of the form F (A) = UAU†, for some U ∈ Cm×n, if and only if χF is
pure.

(b) The following are equivalent:
(i) F is completely positive.
(ii) χF is positive.
(iii) F if of the form F (A) =

∑
i UiAU

†
i , for some finite sequence of matrices

U1, . . . , Uk ∈ Cm×n.

Lemma 4.6 (Soundness for abstractions). Let Γ, x : A ` t : B and θ � Γ ,
such that LtMθ,x=a, LtMθ,x=0dim(A)

∈ LBM. Then χ[a 7→LtMθ,x=a] ∈ LA(BM.

Proof. Using Lemma 4.2 we have that a 7→ LtMθ,x=a−LtMθ,x=⊥ is a linear function.
It also is completely positive by Lemma 4.5, therefore its characteristic matrix
is positive by Theorem A.2.

Its characteristic matrix is the following:

Mt =

LtMθ,x=E11
− LtMθ,x=⊥ . . . LtMθ,x=E1n

− LtMθ,x=⊥
...

. . .
...

LtMθ,x=En1
− LtMθ,x=⊥ . . . LtMθ,x=Enn − LtMθ,x=⊥



A model for affine, linear quantum lambda calculi with general recursion 35

By Definition (see Section 3.3), we have that

χ[a7→LtMθ,x=a] =Mt ⊕ LtMθ,x=⊥

SinceMt ∈ LAM⊗ LBM, we have χ[a 7→LtMθ,x=a] ∈ (LAM⊗ LBM)⊕ LBM. As LtMθ,x=⊥
is in LBM, it is a positive matrix. Then χ[a7→LtMθ,x=a] is a positive matrix because
it is a coproduct between positive matrices, and since it is in (LAM⊗ LBM)⊕ LBM,
it belongs to LA(BM.

A.7 Proof of Lemma 4.7

We first define closure functions, substitutions that close the open terms allow-
ing to rewrite them according to the valuation in respect to which we want to
interpret it. By closing the arrow-type terms in a manner consistent with the
typing context, we can rewrite them and using progress arrive to a value.

Definition A.3 (Closure function). Let f : Var → Val ∪ {⊥}, we note f(t)
as the substitution that replaces free variables in t by values according to the
mapping given by f . We call f a closure function.

Closure functions are used on typed terms, therefore they need to be coherent
with the typing contexts, assigning values with the same type as the variable
they are substituting.

Definition A.4. Let f be a closure function, let Γ be a typing context. f satis-
fies Γ (noted f � Γ) if and only if for all x : A in Γ we have ` f(x) : A.

The following is a coherence definition between a valuation and a closure
function.

Definition A.5. Let f be a closure function and let θ be a valuation, f and θ
are coherent (noted f ↔ θ) if and only if

f(x) = v ⇐⇒ θ(x) = LvM∅

Lemma 4.7 (Soundness for arrow-type terms). Let Γ ` t : A (B and
θ � Γ . One of the following holds:

– There exist t1, . . . , tn and p1, . . . , pn such that for all i, x : A ` ti : B, pi > 0,∑n
i=1 pi ≤ 1 and LtMθ =

∑n
i=1 piLλx.tiM∅.

– LtMθ = 0dim(A(B)

Proof. Let f be a closure function such that f � Γ and f ↔ θ. By substitution
we have that ` f(t) : A(B. Using Progress (trivial extension of Theorem 2.5
to λ[µ]ρ) we have that either f(t) is in Val∪{⊥} or it rewrites, and by Lemma 4.1
we have that LtMθ = Lf(t)M∅.

36 A. Díaz-Caro, M. Ivnisky, H. Melgratti, and B. Valiron

– If f(t) is in Val ∪ {⊥}, by its type we have that either f(t) = ⊥ or f(t) =
{(pi, λx.ti)}i=∈{1,...,n} for a variable x and terms ti such that x : A ` ti : B,
0 < pi ≤ 1 and

∑n
i=1 pi ≤ 1.

In the first case we have:

LtMθ = Lf(t)M∅ = L⊥M∅ = 0dim(A(B)

In the second case we have:

LtMθ = Lf(t)M∅ = L{(pi, λx.ti)}i∈{1,...,n}M∅ =
n∑
i

piLλx.tiM∅

– If f(t) r, since ` f(t) : A (B, by Subject reduction we have that
` r : A (B. As f(r) = r because r is a closed term, using Progress
successively we have that there exist r1, . . . , rn−1 closed terms and rn in
Val ∪ {⊥}, with ` ri : A(B, such that

f(t) r r1 . . . rn

This holds because there are no infinite rewritings, by the strong normalisa-
tion property of the calculus. By Lemma 4.4 we have that:

LtMθ = Lf(t)M∅ = LrM∅ = Lr1M∅ = · · · = LrnM∅

As ` rn : A (B and rn ∈ Val ∪ {⊥}, we have the same results as in the
previous item.

A.8 Proof of Lemma 4.8

Lemma 4.8. Let LtiMθ ∈ LAM for i ∈ {1, . . . , n}. Then for any p1, . . . , pn such
that 0 < pi ≤ 1 with

∑n
i=1 pi ≤ 1, we have

∑n
i=1 piLtiMθ ∈ LAM.

Proof. We prove more generally the following result: Let A be a type. For i in
{1, . . . , n}, let ai ∈ LAM and 0 < pi ≤ 1 with

∑n
i=1 pi ≤ 1. Then

∑n
i=1 piai ∈ LAM.

We proceed by induction on types.

– If A = n, we have LAM = D≤n .
Since pi > 0 for all i and positive matrices form a vector space over R≥0, we
have that

∑n
i=1 piai is a positive matrix in Cn×n.

By trace linearity, we have that tr (
∑n
i=1 piai) =

∑n
i=1 pitr (ai). This is

bounded by
∑n
i=1 pi ≤ 1 because by hypothesis ai ∈ LnM = D≤n .

– If A = (m,n), we have LAM = {p | p ∈
⊕2m−1

i=1 D≤n y tr (p) ≤ 1}.
By hypothesis ai ∈ L(m,n)M, so we can rewrite the ai as ai =

⊕2m−1
j=0 aij ,

where aij ∈ D≤n . Then,

n∑
i=1

piai =

n∑
i=1

pi

2m−1⊕
j=0

aij

 =

2m−1⊕
j=0

(
n∑
i=1

piaij

)

A model for affine, linear quantum lambda calculi with general recursion 37

By case A = n we have that
∑n
i=1 piaij ∈ D≤n for all j ∈ {0, . . . , 2m − 1},

therefore
∑n
i=1 piai ∈

⊕2m−1
i=0 D≤n .

By trace linearity, we have that tr (
∑n
i=1 piai) =

∑n
i=1 pitr (ai). By hypoth-

esis ai ∈ L(m,n)M, then this is bounded by
∑n
i=1 pi ≤ 1.

– If A = B(C, we have LAM = {f | f positive in (LBM⊗ LCM)⊕ LCM}.
Since

∑n
i=1 piai is a positive real combination of elements from LB(CM, it

is in LB(CM.

A.9 Proof of Theorem 4.9

We first give a lemma stating that function application preserves positivity. This
implies that function application interpretation stays inside the domain.

Lemma A.6 (# preserves positivity). Let t be a term and θ be a valuation
such that Lλx.tMθ ∈ LA(BM, then for all a in LAM we have that LtMθ,x=a ∈ LBM.

Proof. By Lemma 4.3 we have LtMθ,x=a = Lλx.tMθ # a. By hypothesis Lλx.tMθ ∈
LA(BM, so we can write Lλx.tMθ =M1⊕M2 withM1 ∈ LAM⊗LBM andM2 ∈ LBM,
both positive matrices. By definition of the # operator, (M1 ⊕M2) # a =
M1@a +M2. Since @ preserves positivity, therefore M1@a is in LBM and so is
the sum.

We also give two auxiliary lemmas and a corollary, concerning trace bounds
after projection of states. There are used in the measurement case of the proof
of soundness.

Lemma A.7. Let ρ be a positive matrix in C2n×2n . Then for all m ≤ n

tr

(
2m−1⊕
i=0

(
|i〉〈i|ρ|i〉〈i|

†))
= tr (ρ)

Proof. By trace linearity:

tr

(
2m−1⊕
i=0

(
|i〉〈i|ρ|i〉〈i|

†))
=

2m−1∑
i=0

tr
(
|i〉〈i|ρ|i〉〈i|

†)
By the trace cyclic property, this is equal to

∑2m−1
i=0 tr

(
ρ|i〉〈i|

†
|i〉〈i|

)
. Since |i〉〈i|

is Hermitian and is also a projector, we have that |i〉〈i|
†
|i〉〈i| = |i〉〈i|, and the

term is equal to
∑2m−1
i=0 tr

(
ρ|i〉〈i|

)
. Since

∑2m−1
i=0 |i〉〈i| = 12n :

2m−1∑
i=0

tr
(
ρ|i〉〈i|

)
= tr

(
2m−1∑
i=0

ρ|i〉〈i|

)
= tr

(
ρ

2m−1∑
i=0

|i〉〈i|

)
= tr (ρ)

Corollary A.8. Let ρ be a positive matrix in C2n×2n . For all m ≤ n and 0 ≤
i ≤ 2m − 1 we have that tr

(
|i〉〈i|ρ|i〉〈i|

†)
≤ tr (ρ).

38 A. Díaz-Caro, M. Ivnisky, H. Melgratti, and B. Valiron

Proof. By bounding every sum term separately.

Lemma A.9. Let ρ be a positive matrix in C2n×2n such that tr (ρ) ≤ 1. Then
for all m ≤ n, for all 0 ≤ i ≤ 2m − 1 we have that |i〉〈i|ρ|i〉〈i|

†
is positive and its

trace is bounded by 1.

Proof. – |i〉〈i|ρ|i〉〈i|
†
is Hermitian: we have (|i〉〈i|ρ|i〉〈i|

†
)† = |i〉〈i|ρ†|i〉〈i|

†
. This

is equal to |i〉〈i|ρ|i〉〈i|
†
because ρ es is Hermitian by hypothesis.

– |i〉〈i|ρ|i〉〈i|
†
is semidefinite positive: multiplying to both sides by a vector u

in C2n we have that u†|i〉〈i|ρ|i〉〈i|
†
u = (u†|i〉〈i|)ρ(|i〉〈i|

†
u). Let v = |i〉〈i|

†
u ∈

C2n , we have that v† = (|i〉〈i|
†
u)† = u†|i〉〈i|. Therefore (u†|i〉〈i|)ρ(|i〉〈i|

†
u) =

v†ρv ≥ 0 because ρ is semidefinite positive.
– The trace of |i〉〈i|ρ|i〉〈i|

†
is bounded by 1: by Corollary A.8 we have that

tr
(
|i〉〈i|ρ|i〉〈i|

†)
≤ tr (ρ) ≤ 1.

Theorem 4.9 (Soundness). Let Γ ` t : A and θ � Γ , then LtMθ ∈ LAM.

Proof. By induction on the typing rules.

– Γ, x : A ` x : A
ax

In this case we have LxMθ = θ(x) by definition. By hypothesis we have that
θ � Γ, x : A, therefore θ(x) = LxMθ ∈ LAM.

–
Γ, x : A ` t : B

Γ ` λx.t : A(B
(i

By the induction hypothesis we have that for all θ′ such that θ′ � Γ, x : A,
LtMθ′ ∈ LBM. Let a ∈ LAM, then θ′ = θ ∪ {x = a} � Γ, x : A, therefore
LtMθ,x=a ∈ LBM. Also, 0dim(A) ∈ LAM, and then LtMθ,x=⊥ ∈ LBM. By definition
we have that Lλx.tMθ = χ[a7→LtMθ,x=a] and by Lemma 4.6 this is in LA(BM.

–
Γ ` t : A(B ∆ ` r : A

Γ,∆ ` tr : B
(e

Since θ � Γ,∆, we have that θ � Γ and θ � ∆. By the induction hypothesis,
LtMθ ∈ LA(BM and LrMθ ∈ LAM. By Lemma 4.7 we have that either that for
some n ∈ N there exist n terms t1, . . . , tn and n real numbers p1, . . . , pn such
that LtMθ =

∑n
i=1 piLλx.tiM∅ (with x : A ` ti : B, 0 < pi ≤ 1 y

∑n
i=1 pi ≤ 1),

or else LtMθ = 0dim(A(B).
By definition, LtrMθ = LtMθ # LrMθ.
• In the first case we have:

LtrMθ =

(
n∑
i=1

piLλx.tiM∅

)
LrMθ =

n∑
i=1

pi(Lλx.tiM∅ # LrMθ)

By Lemma 4.3 this is equal to
∑n
i=1 piLtiMx=LrMθ . By Lemma A.6, we

have LtiMx=LrMθ ∈ LBM for all i. By Lemma 4.8 this linear combination is
in LBM.

A model for affine, linear quantum lambda calculi with general recursion 39

• In the second case we have:

LtrMθ = 0dim(A(B) # LrMθ = 0dim(B) ∈ LBM

This holds because according to the definition for the # operator,
0dim(A(B) is the constant function a 7→ 0dim(B).

–
Γ, f : A ` t : A
Γ ` µnf.t : A

µ

Let Γ be a typing context and let θ be a valuation such that Γ ` µnf.t : A
and θ � Γ . Then by inversion we have that Γ, f : A ` t : A. Using rule (i

we have Γ ` λf.t : A(A. By the soundness case for rule(i, we have that
Lλf.tMθ ∈ LA(AM.
We want to show that Lµnf.tMθ = Lλf.tMθ #n 0dim(A) is in LAM. By induction
on n:
• Base case: Lλf.tMθ #0 0dim(A) = 0dim(A) ∈ LAM by definition.
• Lλf.tMθ #n+1 0dim(A) = Lλf.tMθ # (Lλf.tMθ #n 0dim(A)). By the induc-

tion hypothesis we have that Lλf.tMθ #n 0dim(A) ∈ LAM. Since Lλf.tMθ is
in LA(AM we have that Lλf.tMθ #n+1 0dim(A) is in LAM by Lemma A.6.

– Γ ` ⊥ : A
⊥

By definition we have that L⊥Mθ = 0dim(A). The null matrix is Hermitian,
positive semidefinite and its trace is bounded by 1, so 0dim(A) ∈ LAM for all
type A.

– Γ ` ρn : n
axρ

For all θ, in particular such that θ � Γ , we have LρnMθ = ρ ∈ D≤n = LnM.

–
Γ ` t : n

Γ ` Umt : n
ui

By the induction hypothesis we have that for all θ′ such that θ′ � Γ , LtMθ′ ∈
LnM = D≤n .
Since θ � Γ , then LtMθ ∈ D≤n . By definition we have that LUmtMθ = ULtMθU

†
.

U is a unitary matrix, and so this product is in D≤n .

–
Γ ` t : n

Γ ` πmt : (m,n)
mi

By the induction hypothesis we have that for all θ′ such that θ′ � Γ , LtMθ′ ∈
LnM = D≤n .
Since θ � Γ , we have LtMθ ∈ D≤n . By definition we have that LπmtMθ =⊕2m−1

i=0 (|i〉〈i|LtMθ|i〉〈i|
†
).

As LtMθ is in D≤n , by Lemma A.9 |i〉〈i|LtMθ|i〉〈i|
†
it is in D≤n . By Lemma A.7,

we have that tr (LπmtMθ) = tr
(⊕2m−1

i=0 |i〉〈i|LtMθ|i〉〈i|
†)

= tr (LtMθ), and this is

bounded by 1 by definition of D≤n .
Therefore LπmrMθ ∈

⊕2m−1
i=0 D≤n = L(m,n)M.

–
Γ ` t : n ∆ ` r : m
Γ,∆ ` t⊗ r : n+m

⊗

By the induction hypothesis we have that for all θ′ such that θ′ � Γ , LtMθ′ ∈
LnM = D≤n ; and for all θ′′ such that θ′′ � ∆, LtMθ′′ ∈ LmM = D≤m.

40 A. Díaz-Caro, M. Ivnisky, H. Melgratti, and B. Valiron

By hypothesis we have that θ � Γ,∆, then θ � Γ and θ � ∆. Thus, LtMθ ∈ D≤n
and LrMθ ∈ D≤m.
Then we have that Lr⊗ sMθ = LrMθ ⊗ LsMθ ∈ Dn+m = Ln+mM because tensor
product arity is given by ⊗ : Dn ×Dm → Dn+m.

–
(i=1,...,2m−1) ∆i, x : n ` ti : A Γ ` r : (m,n) `(A) 6= (m′, n′)

∆0, . . . ,∆2m−1, Γ ` letcase◦ x = r in {t0, . . . , t2m−1} : A
me

By the induction hypothesis we have that for all θ′ such that θ′ � Γ we
have that LrMθ′ ∈ L(m,n)M. θ � ∆0, . . . ,∆2m−1, Γ , then θ � Γ and so LrMθ ∈
L(m,n)M.
Also by the induction hypothesis, for all i in {0, . . . , 2m − 1}, for all θ′ such
that θ′ � ∆i, x : n we have that LtiMθ′ ∈ LAM. Since θ � ∆0, . . . ,∆2m−1, Γ ,
in particular θ � ∆i for all i and θ ∪ {x = ρ} � ∆i, x : n for all ρ ∈ D≤n .
Therefore LtiMθ,x=ρ ∈ LAM for all ρ ∈ D≤n and all i ∈ {0, . . . , 2m − 1}.
By definition we have:

Lletcase◦ x = r in {t0, . . . , t2m−1}Mθ =
2m−1∑
i=0

tr (ρi) LtiMθ,x=ρ′i

where LrMθ =
⊕2m−1

i=0 ρi ∈ L(m,n)M and

ρ′i =

{ ρi
tr (ρi)

if tr (ρi) 6= 0

ρi if tr (ρi) = 0

ρ′i ∈ D≤n because ρi ∈ D≤n , therefore by the induction hypothesis LtiMθ,x=ρ′i ∈
LAM for all i in {0, . . . , 2m − 1}.
Since ρi ∈ D≤n for all i, we have 0 ≤ tr (ρi) ≤ 1. Also, as LrMθ ∈ L(m,n)M, we
have tr (LrMθ) ≤ 1. Therefore,

tr (LrMθ) = tr

(
2m−1⊕
i=0

ρi

)
=

2m−1∑
i=0

tr (ρi) ≤ 1

By Lemma 4.8,
∑2m−1
i=0 tr (ρi) LtiMθ,x=ρ′i ∈ LAM.

–
i=1,...,n Γ ` ti : A

∑n
i=1 pi = 1 `(A) 6= (m,n′)

Γ ` {(pi, ti)}i∈{1,...,n} : A
+

By using the induction hypothesis on i in {1, . . . , n}, we have that for all θ′
such that θ′ � Γ , LtiMθ′ ∈ LAM holds. By hypothesis, θ ` Γ . Hence, LtiMθ ∈ LAM
for all i in {1, . . . , n}. By definition of L_M_, we have that L

∑n
i=1 pitiMθ =∑n

i=1 piLtiMθ, which belongs to LAM by Lemma 4.8.

B Proofs of Section 4.2

B.1 Proof of Theorem 4.11

Theorem 4.11. Let ` t : A, then tr (LtM∅) ≤ NA.

A model for affine, linear quantum lambda calculi with general recursion 41

Proof. By induction on types.
By Theorem 4.9 we have that LtM∅ ∈ LAM for every type A.

– If A = n or A = (m,n), we have that tr (LtM∅) ≤ 1 by definition of LnM and
L(m,n)M.

– If A = B(C, by Lemma 4.7 there are two possibilities:
• For n ∈ N, there are n terms t1, . . . , tn and n real numbers p1, . . . , pn such

that x : B ` ti : C, 0 < pi ≤ 1,
∑n
i=1 pi ≤ 1 and LtM∅ =

∑n
i=1 piLλx.tiM∅.

By trace linearity:

tr (LtM∅)

= tr

(
n∑
i=1

piLλx.tiM∅

)

=

n∑
i=1

pitr (Lλx.tiM∅)

=

n∑
i=1

pi

dim(B)∑
j=1

tr
(
LtiMx=EBii − LtiMx=0dim(B)

)
+ tr

(
LtiMx=0dim(B)

)
=

n∑
i=1

pi

dim(B)∑
j=1

tr
(
LtiMx=EBii

)

−
dim(B)∑
j=1

tr
(
LtiMx=0dim(B)

)
+ tr

(
LtiMx=0dim(B)

)
By Lemma A.6, both LtiMx=EBii and LtiMx=0dim(B)

are in LCM, for all i.
Therefore, and by the induction hypothesis, all those terms are positive
and bounded by NC . Then,

tr (LtM∅) ≤
n∑
i=1

pi

dim(B)∑
j=1

NC +NC

 =

n∑
i=1

pi(NB(C) ≤ NB(C

The last inequality holds because of the bound on the probability sum.
• LtM∅ = 0dim(B(C)

This case is trivial: tr (LtM∅) = tr
(
0dim(B(C)

)
= 0 ≤ NB(C

B.2 Proof of Lemma 4.13

Lemma 4.13. Let Γ, x : A ` t : A and θ � Γ . Then for all a, b ∈ LAM, if a v b
we have Lλx.tMθ # a v Lλx.tMθ # b.

Proof. By Lemma 4.5 and Lemma 4.2, we have that the following function is
linear and completely positive, where n = dim(A).

f(c) = LtMθ,x=c − LtMθ,x=0n

42 A. Díaz-Caro, M. Ivnisky, H. Melgratti, and B. Valiron

Since a v b by hypothesis, b−a is a positive matrix and since f is completely
positive, f(b−a) is also a positive matrix. In addition f is linear, then f(b−a) =
f(b)− f(a) is a positive matrix.

f(b− a) =LtMθ,x=b − LtMθ,x=0n − (LtMθ,x=a − LtMθ,x=0n)

=LtMθ,x=b − LtMθ,x=a

By Lemma 4.3 we have LtMθ,x=a = Lλx.tMθ # a and LtMθ,x=b = Lλx.tMθ # b.
Rewriting we have:

f(b− a) = Lλx.tMθ # b− Lλx.tMθ # a

Therefore Lλx.tMθ # b− Lλx.tMθ # a is a positive matrix, and this implies

Lλx.tMθ # a v Lλx.tMθ # b

B.3 Proof of Lemma 4.14

Lemma 4.14. Let χ ∈ Cnm×nm⊕Cm×m and let (Pn) be an increasing sequence
of positive matrices in Cn×n such that lim

n→∞
Pn = P . Then, χ is monotone and

lim
n→∞

χ # Pn = χ # P .

Proof. By Lemma 4.13 we have that interpretations of abstraction terms in this
calculus are monotone with respect to the Löwner order.

Remark that for all 1 ≤ i, j ≤ n, limn→∞(Pn)ij = Pij , where (Pn)ij is a
sequence in C. Let Lij ,K in Cm×m and {Enij} the canonical basis for Cn×n such
that:

χ =

 n∑
i=1

n∑
j=1

Enij ⊗ Lij

⊕K
By Lemma 3.6, since the first term of this matrix acts linearly on the argu-

ment, it is linear in every matrix element. Therefore application is continuous
on every matrix element:

lim
n→∞

χ # Pn = lim
n→∞

n∑
i=1

n∑
j=1

(Pn)ijLij +K =

n∑
i=1

n∑
j=1

PijLij +K = χ # P

B.4 Proof of Lemma 4.15

We need first the following technical lemma.

Lemma B.1. For all positive M in Cn×n and u in Cn we have that u†Mu ≤
tr (M) ‖u‖2.

A model for affine, linear quantum lambda calculi with general recursion 43

Proof. Since M is positive, it is diagonalisable and can be written as P−1DP
where D ∈ Cn×n is diagonal and P ∈ Cn×n is unitary.

Therefore we have that

u†Mu = u†(P−1DP)u = (u†P−1)D(Pu) = v†Dv

Defining v = Pu ∈ Cn. Let vi ∈ C be v’s elements:

u†Mu =
∑
i

v2i dii ≤

(∑
i

v2i

)(∑
i

dii

)
= tr (D) ‖v‖2 = tr (M) ‖u‖2

This inequality holds because dii ≥ 0 for all i since these areM ’s eigenvalues,
that is a positive matrix.

Lemma 4.15. For any type A, (DA,v) is a complete partial order.

Proof. We follow the structure of the proof at [10, Proposition 3.6].
We want to prove that in this set, the increasing sequences with respect to

the Löwner order have a least upper bound.
DA is a subset of positive matrices in C2n×2n . Let M1 and M2 be matrices

in DA.
By definition M1 vM2 if and only if M2 −M1 is a positive matrix, and this

happens if and only if u†(M2 −M1)u ≥ 0 for all u in C2n . Therefore M1 v M2

if and only if u†M1u ≤ u†M2u for all u in C2n .
Thus, for all increasing sequences in DA:

M1 vM2 v . . . vMn v . . .

there is a corresponding increasing sequence in R≥0 for all u in C2n :

u†M1u ≤ u†M2u ≤ · · · ≤ u†Mnu ≤ . . .

By Lemma B.1 and Theorem 4.11 we have that every element of the increas-
ing sequence {u†Mnu} are bounded by NA ‖u‖2, since Mn matrices are in DA.
Any bounded increasing sequence in R has a least upper bound. Therefore the
corresponding sequence {Mn} in DA also has a least upper bound, and, by trace
continuity, it is bounded by NA. Hence, it is in DA.

	A finite-dimensional model for affine, linear quantum lambda calculi with general recursion

